
Where &Who Should You Advertise?
Influence Maximization for Two-Layer Networks

Yishi Lin

The Chinese University of Hong Kong

yishilin14@gmail.com

John C.S. Lui

The Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

ABSTRACT
“Where to advertise” asks how to select content providers for display-

ing advertisements so to reach large audiences. “Who to advertise”,
on the other hand, asks how to identify influential users so to spread

marketing messages far and wide in a social network. The Amphibi-
ous Influence Maximization (AIM) problem asks a combination of

theses two questions. To be specific, it asks how to select bc seed
content providers and bv seed users so that the influence could

spreadwidely from seed content providers through seed users to the

entire social network. Approximating the AIM problem to within

any constant factor is NP-hard, and no existing method scales to

large social networks. To address the scalability issue, we present

two algorithms AIM-α and AIM-∅. For ϵ > 0, AIM-α returns seeds

and an approximation ratio (1 − 1/e − ϵ) · ρ where ρ ≥ α/bc . The
returned solution is a (1 − 1/e − ϵ) · ρ-approximate solution with

high probability. In AIM-α , the parameter α (1 ≤ α ≤ bc) controls
the trade off between the approximation ratio and the efficiency.

The other algorithm AIM-∅ is an efficient heuristic algorithm. It is

a condensed version of AIM-α . We conduct extensive experiments

to evaluate and compare AIM-α and AIM-∅. In a dataset with 1.7

million users and 104 thousands content providers, when ϵ = 0.5,

AIM-α where α = 1 finds 10 seed content providers and 1000 seed

users within 72 seconds, and AIM-∅ finishes within 16 seconds.

Moreover, our experiments show that AIM-α and AIM-∅ always
return solution with similar influence spread.

1 INTRODUCTION
With the popularity of online social networks, viral marketing has

become an important channel for advertisers to achieve market-

ing objectives. In real marketing campaigns, advertisers have to

consider not just “who to advertise to” but also “where to advertise”.
For example, to promote a local business such as a coffee shop,

shop owners must decide which social media or blogging sites

they should reach out to (i.e., where to advertise). Meanwhile, to

make sure their marketing messages spread far and wide among

consumers, they also have to target influential coffee lovers and

display their advertorials to them (i.e., who to advertise to). Another

example would be how to open pop-up stores so to increase brand

awareness and boost sales. In this case, retailers have to simulta-

neously decide where to open their stores and who are influential

consumers they should attract.

The “who to advertise to” part is in fact the classical Influence
Maximization (IM) problem [14] that has been intensively stud-

ied. Adding the question of “where to advertise” makes the classi-

cal problem more practical. Recently, Chen et al. [6] formulated a

combination of these two questions as the Amphibious Influence
Maximization (AIM) problem. In AIM, we are given a two-layer

influence influence

influencesubscribe

BobAlice Carol

Blog

Amphibious influence maximization:

• Bob & Blog influence {Bob, Carol}

• Alice & Blog influence no one

Classical influence maximization:

• Alice influences {Alice, Bob, Carol}

Figure 1: Amphibious influence maximization versus the
classical influence maximization. The social network con-
tains three users. The “Blog” is a content provider.

network. The first layer contains a setC of “content providers” (e.g.,

blogs, potential locations for stores). The second layer is a social

network modeled by a directed graph G = (V ,E), where V repre-

sents users and E represents edges. A bipartite graph B = (C,V ,M)
models the inter-layer links. Here, M is a |C | × |V | matrix where

Mcv represents the “influence probability” from content provider c
to user v . Influence propagates first from “seed content providers”

to “seed users”, then to other users in the social network following

a predetermined influence propagation model. The AIM problem

asks to select bc seed content providers and bv seed users so that

the expected influence spread upon seeding them is maximized.

Figure 1 provides an example of AIM. In the social network, Alice

influences Bob, and Bob influences Carol. There is one “content

provider”, a blog. Bob subscribes to this blog, and is influenced by

its articles. In IM, if Alice is a seed user, all users are influenced.

However, in AIM, if we want to influence any user, we should

simultaneously seed the blog and Bob. The blog and Bob together

influence two users (i.e., Bob and Carol), thus have an influence

spread of two. This example shows the difference between IM and

AIM. It is important to note that influential users in the IM problem

may not be good seed users in the AIM problem.

The AIM problem is important yet challenging. Chen et el. [6]

proved that it is NP-hard to even approximate AIM to within any
constant factor. They proposed the Sampled Double Greedy (SDG)
algorithm that returns a (1 − 1/e − ϵ)3 solution with a probability

of at least 1 − δ , for any 0 < ϵ,δ < 1. The time complexity is

O(|V |r log |C |r (bc+bv)(|C |+ |V |+ |M |+ |E |)ϵ
−(r+2)

log(1/δ)), where
r is the rank ofM and |M | is the number of non-zero entries inM .

Unfortunately, the running time of SDG grows exponentially with

the rank r of the matrixM , thus it cannot scale to large networks

with arbitrary form ofM .

Contributions. To conduct efficient amphibious influence maxi-

mization in real marketing campaigns, it is essential to have practi-

cal algorithms that work for the AIM problem in general (i.e., has

no restriction on the rank ofM). Motivated by this, we present two

new algorithms for the AIM problem in this paper.

The first algorithm AIM-α returns a (1−1/e−ϵ)·α/bc -approximate

solution with high probability. The integer parameter α controls the

trade off between the approximate ratio and the efficiency: AIM-1
is the most efficient one, AIM-bc is the most effective one. Together

with seed content providers and seed users, AIM-α also returns an

approximation ratio (1 − 1/e − ϵ) · ρ in each execution, where ρ is

always at least α/bc . The obtained set of seeds is a (1 − 1/e − ϵ) · ρ-
approximate solution with high probability. AIM-α provides ap-

proximation guarantee better than SDG if α/bc ≥ (1 − 1/e − ϵ)2

(e.g., α ≥ bc/58 when ϵ = 0.5). We believe that the budget bc in

a real marketing campaign is usually limited, say only a few. For

example, retailers usually open pop-up stores in a few highly selec-

tive locations because opening each store incurs high costs. Under

the assumption of small bc , AIM-α with small α would provide

performance guarantee better than the unscalable SDG.
The second algorithm AIM-∅ is an efficient heuristic algorithm.

It returns seeds with similar influence spread as compared to AIM-α
in our experiments. It is particularly useful when we have to main-

tain seeds in a dynamic two-layer network. In this case, we can first

compare solutions returned by AIM-α and AIM-∅ in the initial net-

work. Suppose they return solution with similar influence spread,

when there are minor changes to the network, it is very likely that

they still return solution with similar influence spread. Thus, we

could update seeds via the much more efficient AIM-∅ algorithm.

To evaluate and compare the performance of proposed algo-

rithms, we conduct extensive experiments using real social net-

works and bipartite graphs constructed in various ways. Our exper-

iments show that both of our algorithms are efficient and effective.

For example, let ϵ = 0.5 and δ = 0.001. In a dataset with 1.7 mil-

lion users, 22.6 million edges among users, 104 thousands content

providers and 8.5 million edges between users and providers, when

ϵ = 0.5, AIM-α where α = 1 finds 10 seed content providers and

1000 seed users within 72 seconds, and AIM-∅ finishes within 16

seconds. Our experiments show that AIM-1 is both efficient and

effective. Moreover, AIM-∅ is more efficient than AIM-1, and it re-

turns solution with comparable influence spread as compared to

AIM-1.
Paper organization. Section 2 gives background and preliminar-

ies. Section 3 introduces the Amphibious Influence Maximization
(AIM) problem. We present our basic algorithm in Section 4, and

AIM-α built upon it in Section 5. We present a heuristic method

AIM-∅ in Section 6. We show experimental results in Section 7.

Section 8 provides related works. Section 9 concludes the paper.

2 BACKGROUND AND RELATEDWORK
We first introduce the classical influence maximization (IM) prob-

lem. Then, we review state-of-the-art IM techniques, which are

preliminaries of this paper.

2.1 Influence maximization
Kempe et al. [14] first formulated the Influence Maximization prob-

lem as a discrete optimization problem. They also proposed the

Independent Cascade (IC) model and the Linear Threshold (LT) model

to describe how influence propagates in a social network. In these

models, social networks are modeled by a directed graphG = (V ,E)
with n nodes andm edges. Every edge euv ∈ E is associated with

an influence probability puv . Let S ⊆ V be a set of seed users.

Initially, nodes in S are influenced. Under the IC model, when a

node u gets influenced, it tries to influence each of its uninflu-

enced neighbor v and succeeds with probability puv . Under the LT
model, each node v randomly determines a threshold θv ∼ U [0, 1].
Then, an uninfluenced node v gets influenced once the total in-

fluence probabilities of his influenced neighbors exceeds θv (i.e.,∑
u :influenced neighbor of v puv ≥ θv). The propagation process under

either model continues until no new nodes gets influenced. Given a

seed set S ⊆ V , the expected influence spread σ (S) is the expected
number of nodes influenced at the end of the propagation.

Under a predetermined propagation model, the Influence Max-
imization (IM) problem asks how to select a set S ⊆ V of k seed

nodes so that the expected influence spread is maximized. Formally,

we want to find

S = argmax

S ⊆V , |S |=k
σ (S). (1)

Under both the IC and LT model, the IM problem is NP-hard [14],

and computing σ (·) is #P-hard [7, 8]. Due to the NP-hardness of the
IM problem, there are many studies focusing on finding efficient

approximate algorithms [4, 10, 11, 13, 17, 21, 26, 27, 29].

2.2 State-of-the-art IM techniques
We now introduce state-of-the-art influence maximization algo-

rithms. They are based on the Reverse Reachable Sets (RR-sets) [4].
RR-sets. Suppose influence propagates in social networks under

a predetermined model. An RR-set for a node r is a random set R
of nodes, such that for any seed set S ⊆ V , the probability that

R ∩ S , ∅ equals the probability that S influences r in a random

diffusion process. Note that the definition of RR-set here is in

fact the definition of Reverse Influence Set (RI-set) [27], a general-
ized definition of the original RR-set. A random RR-set is gener-

ated according to a random “root” node r . By definition, we have

σ (S) = n ·ER [I(R ∩ S , ∅)] for any S ⊆ V , where I(·) is the indicator
function. By Chernoff bound, if we have a sufficiently large collec-

tion R of random RR-sets, the value of n/|R| ·
∑
R∈R I(R ∩ S , ∅)

would be a good estimation of σ (S). The detailed generation of RR-

sets is beyond the scope of this paper. We refer interested reader

to [4] and [26] for more details.

IM algorithms. Prior art includes IMM (Influence Maximization via

Martingale) [27], SSA (Stop-and-Stare Algorithm) and its dynamic

version D-SSA [21]. In these methods, estimating the influence

spread is done by sampling a sufficiently large number of random

RR-sets. Based on the estimated influence spread, a greedy seed
selection subroutine selects and returns k seed nodes as the solution.

We summarize the main results of these methods as follows.

Theorem 2.1 (IMM, SSA, and D-SSA). Suppose we are given a social
network G = (V ,E), an integer k , and parameters 0 < ϵ,δ < 1, and
we know how to generate random RR-sets. Let the optimal seed set be
S∗k . Denote the influence spread estimated by sampled RR-sets by σ̂ (·).
With probability at least 1−δ , the influence maximization algorithm
returns a solution Ŝk satisfying (1+ϵa) ·σ (Ŝk) > σ̂ (Ŝk) and σ̂ (S∗k) ≥
(1 − ϵb) · σ (S

∗
k), where (1 − 1/e)(ϵa + ϵb)/(1 + ϵa) ≤ ϵ . Conditioned

on the above two inequalities , we have σ (Ŝk) ≥ (1− 1/e − ϵ) · σ (S∗k).
2

Table 1: Frequently used notations.

Notation Description
G=(V ,E) a social network with users V and edges E

B=(C,V ,M) a bipartite graph between C and V
(M is a |C | × |V | probability matrix)

n,nc # of users, # of content providers

bc ,bv the budget for seeding content providers / users

X ,Y seed content providers / users (X ⊆ C,Y ⊆ V)

σ (X ,Y) the expected influence spread of (X ,Y)

OPT the optimal influence spread

R a random RR-set (R ⊆ V)

RX a random RRX -set (X ⊆ C , RX ⊆ V)

RY a random RRY -set (Y ⊆ V , RY ⊆ C)

Thus, these methods return a (1− 1/e − ϵ)-approximate solution with
probability at least 1 − δ .

Parameters ϵa and ϵb in Theorem 2.1 are determined by the

specific IM algorithm. In IMM, they are functions of n, k , ϵ and δ . In
SSA, the authors provided several suggested settings for different

sizes of the input network. D-SSA determines values dynamically at

runtime. The IMM method runs inO((k + log(1/δ))(n +m) logn/ϵ2)
expected time. In practice, SSA and D-SSA are usually more efficient

than IMM especially when the number of seeds k is large.

3 PROBLEM DEFINITION
In this section, we present the formal definition of the Amphibious
Influence Maximization problem and its inapproximability result [6].

Then, we review the existing solution and discuss its limitation.

Table 1 summarizes frequently used notations.

Amphibious influence propagation model. Influence propa-

gates in a two-layer network. The first layer contains a set C of

content providers. Let nc = |C | be the number of content providers.

The second layer is a directed social networkG = (V ,E). Letn = |V |
be the number of users. A bipartite graph B = (C,V ,M) models

the inter-layer links. Here,M is a nc × n matrix whereMcv is the

probability that the content provider c influences a user v . We let

Mcv = 0 if c and v are not connected. Let X ⊆ C be a set of seed

content providers and let Y ⊆ V be a set of seed users, influence

propagates as follows. First, every seed content provider c ∈ X tries

to influence every seed user v ∈ Y and succeeds with probability

Mcv . It is easy to see that a seed user v ∈ Y gets influenced in this

step with probability 1 −
∏

c ∈X (1 −Mcv). Let Y
′ ⊆ Y be the set of

influenced seed users. In the second step, nodes in Y ′ act as seed
users as in the classical influence propagation model (e.g., IC or LT)

and spread their influence. We use σ (X ,Y) to denote the expected

influence spread of (X ,Y). By definition of the propagation model,

we have σ (X ,Y) =
∑
Y ′⊆Y Pr[X influences Y ′] ·σ (Y ′), where σ (Y ′)

is the influence spread of Y ′ ⊆ Y in the social network as in the

classical influence propagation model. Given X (resp. Y), σ (X ,Y) is
a monotone and submodular function of Y (resp. X) [6].

In this paper, when the context is clear, we use seeds or solution
to refer to a set of seeds containing both seed content providers

and seed users. Moreover, we assume that influence propagates

among users under a predetermined model with known methods

to generate RR-sets (e.g., IC or LT).

Amphibious InfluenceMaximization (AIM) problem.TheAIM
problem is formally defined as follows [6].

Definition 3.1 (Amphibious Influence Maximization). Given a bi-

partite graph B = (C,V ,M), a social network G = (V ,E), and bud-

gets bc and bv , find a subset X ⊆ C of size bc and a subset Y ⊆ V of

size bv such that the influence spread σ (X ,Y) is maximized. That

is, finding X and Y such that

(X ,Y) = argmax

X ⊆C, |X |=bc ,Y ⊆V , |Y |=bv
σ (X ,Y). (2)

Inapproximability result. Seed content providers spread influ-

ence to non-seed users through seed users. The hardness of AIM

lies in simultaneously identifying a good combination of these two

types of seeds. In fact, Chen et al. [6] proved that approximating
the AIM problem to within any constant factor is NP-hard.
Existing solution and its limitation. Chen et al. [6] proposed

the Sampled Double Greedy (SDG) algorithm for AIM-r , where AIM-

r is a restricted version of the AIM problem assuming that the rank

of the matrixM is r . For 0 < δ , ϵ < 1, SDG returns a (1 − 1/e − ϵ)3

solution with probability 1 − δ . It runs in O(|V |r (log |C |)r (bc +
bv)(|C |+ |V |+ |M |+ |E |)ϵ

−r−2
log(1/δ))where |M | is the number of

non-zero entries ofM . The running time of SDG grows exponentially
with the rank of M . Thus, it cannot handle the AIM problem in

large social networks (with large |V |) unless the rank ofM is one.

However, the bipartite-graph modeled byM could take any form

(e.g., who subscribes what TV programs, who is a member of which

community) and it is impractical to make any assumption about

the rank ofM . Thus, the applicability of SDG is extremely limited.

Motivated by the limitation of SDG, we present a tunable algo-
rithm AIM-α that returns a solution together with a data-dependent

approximation ratio (1 − 1/e − ϵ) · ρ where ρ ≥ α/bc . We also

present an efficient heuristic algorithm AIM-∅ for the AIM problem.

Both AIM-α and AIM-∅ could be easily adapted to handle the

AIM problem under a more general model where the probability

that a user v ∈ V being influenced by seed content providers is

defined by a more general function fv (X ,Y) that is submodular on

both X and Y . For ease of presentation, in this paper, we focus on

the amphibious propagation model defined at the beginning of this

section (i.e., fv (X ,Y) = (1 −
∏

c ∈X (1 −Mcv)) · I(v ∈ Y), ∀v ∈ V).

4 A BASIC ALGORITHM
In this section, we present our basic algorithm to AIM. It returns

a basic solution with α ≤ bc seed content providers and bv seed

users. With high probability, the expected influence spread of the

basic solution is at least (1 − 1/e − ϵ) · α/bc · OPT , where OPT is

the optimal influence spread. The basic algorithm together with a

post-optimization step constitutes our solution AIM-α .
In what follows, we first present how we estimate the influence

spread given seeds. Then, we describe how we select seed users

given seed content providers. Finally, we elaborate in details about

how we find the basic solution.

4.1 Influence estimation
The basic algorithm, AIM-α and AIM-∅ all use a FindUser subrou-
tine to find seed users with given content providers X ⊆ C . Before

3

r v1 v2

c1 c2

R ⊆ V

X ⊆ C

p p p p
• Pr[r ∈ RX] = p
• Pr[v1 ∈ RX] = 1 − (1 − p)2

• Pr[v2 ∈ RX] = p

Figure 2: Generating a random RRX -set given a random RR-
set R={r ,v1,v2} and seed content providers X={c1, c2}.

describing FindUser, we first present how we estimate the influ-

ence spread of σ (X ,Y) for all Y ⊆ V , when X ⊆ C is given.

In the remaining of this paper, we still use “RR-set” to refer to

RR-sets for estimating influence spread in the classical influence

propagation model (e.g., IC or LT). And the notation R still denotes a

randomRR-set. Given a set of content providersX , we use “RRX -set”

to denote the customized RR-set-like data structure for estimating

σ (X ,Y) for Y ⊆ V . Let RX denote a random RRX -set. Formally, a

random RRX -set RX is defined as follows.

Definition 4.1 (Random RRX -set). Given seed content providers

X ⊆ C , a random RRX -set RX is generated as follows. First, we

generate a random RR-set R as if we are solving the influence max-

imization problem. To be specific, we first uniformly and random

select a root node r ∈ V , generate a random reverse influence

propagation process, and keep all nodes that can influence r in the

process in a node set R. Then, for every node v ∈ R, we keep it in

RX with probability 1 −
∏

c ∈X (1 −Mcv) (i.e., the probability that

it can be influenced by X).

Note that if every user can be influenced by the given seed

content provider set with probability one, the definition of the

random RRX -set is equivalent to that of the random RR-set.

Figure 2 illustrates howwe generate a random RRX -set RX given

the content provider set X = {c1, c2}. First, we obtain a random

RR-set R = {r ,v1,v2}. In Figure 2, every content provider in X
influences every user in R with probability p. To get RX from R, we
keep r (resp. v1 or v2) in RX with probability p (resp. 1− (1−p)2 or
p). Note that although R is always non-empty because r ∈ R, it is
possible that none of the nodes in R is included in RX and RX = ∅.

By Definition 4.1, we have the following lemma about RRX -sets.

Lemma 4.2 (RRX -sets). Given a set X of seed content providers,
for any seed user set Y , we have σ (X ,Y) = n · ERX [I(RX ∩ Y , ∅)]
where he expectation is taken over the randomness of RX .

Proof. In the IM problem, let R be a random RR-set, the prob-

ability that R ∩ S , ∅ equals the probability that a random user

can be influenced by the seed set S . Similarly, in the amphibious

influence propagation model, let RX ⊆ V be a random RRX -set

whereX ⊆ C is a set of seed content providers. LetY ⊆ V be a set of

seed users. The probability that RX ∩ Y , ∅ equals the probability
that a random user can be influenced by seed users in Y who are

influenced by X . Thus, ERX [I(RX ∩ Y , ∅)] equals σ (X ,Y)/n. □

4.2 Subroutine for finding seed users
We now present an important FindUser subroutine. Given a set of

content providers X , FindUser aims at finding a set Y of bv seed

users so that σ (X ,Y) is maximized. Algorithm 1 depicts FindUser.
In Algorithm 1, we first compute the probability that X can influ-

ence every nodev , denoted by pX [v]. The values of pX [·] are useful

Algorithm 1: FindUser (given content providers X)

Input :X ⊆ C , bv , ϵ ,δ , a sequence R of random RR-sets

Output : (X ,Y), σ̂ (X ,Y), an updated sequence R of RR-sets

// Initialize the probability that X can influence each user

1 for v ∈ V do pX [v] ← 1 −
∏

c ∈X (1 −Mcv)

// IM where random RRX -sets are generated via RRGivenX

2 ⟨Y , σ̂ ,R⟩ ←InfluenceMaximization(bv , ϵ,δ ,R) // e.g., SSA

3 return (X ,Y), σ̂ (X ,Y) := σ̂ , R
4 Procedure RRGivenX
5 R ← the next RR-set from R (insert one if there is none)

6 RX ← every node v ∈ R is included in RX w.p. pX [v]

7 return RX // RX is a random subset of R

in sampling RRX -sets. Line 2 utilizes an influence maximization

algorithm (e.g., SSA) to sample RRX -sets and greedily select a set

of bv seed users according to their estimated influence spread.

Reusing randomRR-sets. FindUser takes a sequence of random
RR-sets R as one input and returns it. The returned sequence may

contain more random RR-sets. In our algorithm, we reuse the same

sequence R of random RR-sets among all calls to FindUser and

other similar subroutines requiring random RR-sets. This is moti-

vated by the fact that sampling a random RRX -set given X ⊆ C
requires a random RR-set, but sampling a random RR-set is done

independently ofX . Thus, we reuse previously generated RR-sets to

speed up later calls to FindUser and similar subroutines. Because

RR-sets inR are independent of each other, in each call to FindUser
given X , the set of random RRX -sets are independent of each other.

Lemma 4.3 shows the performance guarantee of FindUser.

Lemma 4.3 (FindUser). Given X ⊆ C , bv , ϵ , and δ . Let Y be the
set of seed users returned by FindUser, and let Y ∗ be the optimal
solution. With a probability of at least 1 − δ , Y is a (1 − 1/e − ϵ)-
approximate solution, and we have (1 + ϵa) · σ (X ,Y) ≥ σ̂ (X ,Y) and
σ̂ (X ,Y ∗) ≥ (1−ϵb) ·σ (X ,Y

∗) where (1− 1/e)(ϵa +ϵb)/(1+ϵa) ≤ ϵ .

Proof. By the definition of randomRRX -sets, we haveσ (X ,Y) =
n · ERX [I(RX ∩ Y , ∅)] for all Y ⊆ V . FindUser samples random

RRX -sets to estimate the influence spread. Then, Lemma 4.3 follows

from Theorem 2.1 about influence maximization algorithms. □

In Lemma 4.3, the values of ϵa and ϵb depend on the IM algorithm

that being used. We do not consider D-SSA because the values of
ϵa and ϵb are determined during the runtime and may vary from

different calls to FindUser. Both IMM and SSA could be applied in

FindUser, we choose SSA for its efficiency: it is more efficient than

IMM while being used as a building block in our algorithms. While

presenting our algorithms, we assume that ϵa and ϵb are known

because our analysis is independent of their specific values. We will

provide detailed parameter settings for our experiments later.

4.3 Design of the basic algorithm
The basic algorithm finds α seed content providers and bv seed

users. The naive approach is to enumerate over all

(nc
α
)
combina-

tions of α content providers. For each combination X , we find seed

users Y and get a candidate solution (X ,Y). Finally, we return the

candidate solution with the largest estimated influence spread.

4

Algorithm 2: Basic Algorithm
Input :B,G, α , bv , ϵ , δ
Output : (Xα ,Yα), σ̂ (Xα ,Yα), a sequence of random RR-sets R

// Preparation

1 R ← ∅, (Xα ,Yα) ← (∅, ∅), σ̂ (Xα ,Yα) ← 0, prunethld ← 0

2 for c ∈ C do ub[c] ← InfluenceUB({c})

3 Sort content providers so that ub[ci] ≥ ub[ci+1],∀i
// Enumeration

4 for each X ⊆ C , |X | = α , in dictionary order do
5 check ←PruneCheck(X)

6 if check is “do not prune” then
7 ⟨(X ,Y), σ̂ (X ,Y),R⟩ ← FindUser(X ,bv , ϵ,δ ,R)

8 if σ̂ (X ,Y) ≥ σ̂ (Xα ,Yα) then
9 (Xα ,Yα) ← (X ,Y), σ̂ (Xα ,Yα) ← σ̂ (X ,Y)

10 prunethld ← σ̂ (Xα ,Yα)/(1 + ϵa)

11 else if check is “early termination” then break

12 return (Xα ,Yα), σ̂ (Xα ,Yα), R
// Return an upper bound of σ (X ,V) with prob. at least 1 − δ

13 Procedure InfluenceUB(X)
14 RX ← θ random RRX -sets use random RR-sets in R (add

more random RR-sets to R if necessary)

15 σ̂ (X ,V) ← n
θ
∑
RX ∈RX I(RX ∩V , ∅)

16 return σ̂ (X ,V) + n ·
√

1

2θ · ln(
1

δ)

17 Procedure PruneCheck(X)
18 if α = 1 then
19 ubX ← ub[c], where c in the only element in X

20 if ubX < prunethld then return “early termination”

21 else
22 ubX ← InfluenceUB(X)

23 if ubX < prunethld then return “prune X ”

24 return “do not prune”

Our basic algorithm is inspired by the above idea, but works in

a smarter way. We are able to prune “hopeless” content provider

sets without having to find seed users for them by being careful

about the “enumeration order” of content provider sets. Algorithm 2

depicts the basic algorithm.

Preparation. Line 1 initializes the sequence of random RR-sets

R, the basic solution and the “pruning-threshold”. The pruning-

threshold maintains a lower bound of the influence spread of the

basic solution. Lines 2-3 sort content providers in ascending order

of their upper bounds of influence spread when being used as a seed

returned by the InflueneUB subroutine. For a set X ⊆ C , σ (X ,V)
is an upper bound of the influence spread of X and any set of seed

users Y ⊆ V . Because of the #P-hardness of computing σ (X ,V),
we obtain an upper bound of σ (X ,V) with high probability via a

subroutine InfluenceUB. We will present more details about the

InfluenceUB subroutine and the pruning strategy shortly.

Enumeration. Lines 4-11 enumerate over all α-combinations of

content providers in the dictionary order of ub[·]. For example,

when α = 2 and |C | ≥ 2, the first two enumerated sets are {c0, c1}

and {c0, c2}. For X ⊆ C , PruneCheck decides whether we can skip

finding seed users given X or even terminate the enumeration.

We find seed users given X only if the estimated upper bound of

σ (X ,V) exceeds the pruning-threshold. Suppose X is not pruned,

Lines 7-10 find seed users for it and maintain the basic solution and

the pruning-threshold. Finally, Line 12 returns the best solution.

InfluenceUB. Given X , InfluenceUB estimates σ (X ,V) via θ sam-

ples of RRX -sets. Then, it derives the additive error of the estimation

by Chernoff bound, and returns an upper bound of σ (X ,V). For
the value of θ , we find that θ = n/10 is a balanced choice: it is

usually no more than the number of RR-sets required in all calls to

FindUser, and it also provides a tight upper bound so that the prun-
ing strategy is effective. Formally, we have the following lemma

about InfluenceUB. The proof is presented in the appendix.

Lemma 4.4 (InfluenceUB). Given X ⊆ C , InfluenceUB returns
an upper bound of σ (X ,V) with a probability of at least 1 − δ .

Pruning.We prune subsets X ⊆ C that are unlikely to be returned

as seed content providers. Recall that (Xα ,Yα) keeps the best solu-
tion found so far. If we know σ (X ,V) ≤ σ (Xα ,Yα) for X ⊆ C , we
can pruneX becausewe knowwe haveσ (X ,Y) ≤ σ (Xα ,Yα) for any
setY of seed users. Because of the #P-hardness of the influence com-

putation, to check whether we can prune X ⊆ C , PruneCheck com-

pares an upper bound of σ (X ,V) and a lower bound of σ (Xα ,Yα)
maintained by the pruning-threshold. We prune a setX if the upper

bound of σ (X ,V) is no larger than the pruning-threshold.

Analysis. Theorem 4.5 shows the influence spread of the basic

solution. The (1 − 1/e − ϵ) · α/bc -approximation guarantee of our

algorithm AIM-α that will be presented in the next section is mainly

due to Theorem 4.5.

Theorem 4.5 (Basic algorithm). Let (X ∗α ,Y
∗
α) be the optimal

solution when we can select α seed content providers and bv seed
customers. And let OPTα = σ (X ∗α ,Y

∗
α). Denote the basic solution

returned by the basic algorithm by (Xα ,Yα). With a probability of at
least 1−

((nc
α
)
+ 1

)
·δ , we have σ̂ (Xα ,Yα) ≥ (1−1/e)(1−ϵb) ·OPTα ,

σ̂ (Xα ,Yα) ≤ (1+ϵa)·σ (Xα ,Yα)where (1−1/e)(ϵa+ϵb)/(1+ϵa) ≤ ϵ .
Thus, with a probability of at least 1 −

((nc
α
)
+ 1

)
· δ , we have

σ (Xα ,Yα) ≥ (1 − 1/e − ϵ) ·OPTα . (3)

Proof Outline. From Lemma 4.3 and Lemma 4.4, we can show

that the following two arguments hold simultaneously with a high

probability. First, we do not prune the set X ∗α . We obtain a set Y ′ of
seed users forX ∗α , and σ̂ (X

∗
α ,Y

′) ≥ (1−1/e)(1−ϵb) ·OPTα . Second,
the basic solution (Xα ,Yα) satisfies σ̂ (Xα ,Yα) ≤ (1+ϵa)·σ (Xα ,Yα).
When the above two arguments hold, and because (1 − 1/e)(ϵa +
ϵb)/(1+ ϵa) ≤ ϵ , we could show by contradiction that σ (Xα ,Yα) ≥
(1 − 1/e − ϵ) ·OPTα . The complete proof is in the appendix. □

5 APPROXIMATION ALGORITHM
We now present our algorithm AIM-α to the AIM problem. AIM-α
is based on the basic algorithm and an extra post optimization

phase. In this section, we first present an important subroutine

FindContentProvider required by the post optimization phase.

Then, we present AIM-α by elaborating the post optimization phase

in detail and providing analysis of the approximation ratio.

5

Algorithm 3: FindContentProvider (given users Y)

Input :Y ⊆ V , bc , a sequence of random RR-sets R

Output : (X ,Y)
1 RY ← |R| random RRY -sets via RRGivenY(B,G,R)

2 Find X ⊆ C with bc nodes that “covers” most RRY -sets in RY
3 return (X ,Y)
4 Procedure RRGivenY(B,G,R)
5 R ← the next unused RR-set from R, RY ← ∅

6 for c ∈R ∩Y do Insert c into RY w.p. 1−
∏

v ∈R∩Y (1−Mcv)

7 return RY // RY is a random subset of R ∩ Y

5.1 Subroutine for finding seed content providers
FindContentProvider finds seed content providers given a set of

seed users Y . It is similar to FindUser. First, we define the random
RRY -set that will be used to estimate the influence spread σ (X ,Y)
for X ⊆ C when the set of seed user Y is given.

Definition 5.1 (A random RRY -set RY). Given a set of seed users

Y ⊆ V , a random RRY -set RY is generated as follows. First, we

generate a random RR-set R as if we are solving the influence

maximization problem. Then, we insert every c ∈ C connected to

nodes in R ∩ Y into RY with the probability that c can influence at

least one node in R∩Y (i.e., with probability 1−
∏

v ∈R∩Y (1−Mcv)).

We have the following lemma about RRY -sets.

Lemma 5.2 (RRY -sets). GivenY ⊆ V , for any seed content provider
set X ⊆ C , we have σ (X ,Y) = n · ERY [I(RY ∩ X , ∅)]. The expecta-
tion is taken over the randomness of the RRY -set RY .

Proof. Let RY be a random RRY -set (RY ⊆ C). GivenX ⊆ C , the
probability that RY ∩ X , ∅ equals the probability that a random

user is influenced by seed users in Y who are influenced by X . □

Algorithm 3 depicts FindContentProvider. First, we construct
a set RY of random RRY -sets. Then, we greedily select and return

a set of bc content providers that “covers” the most RRY -sets in

RY : we say that X ⊆ C “covers” an RRY -set RY iff. X ∩ RY , ∅. In
practice, the number of RR-sets in R generated in the basic algo-

rithm is not too small. Because |RY | = |R |, the number of random

RRY -sets in RY is not too small. By applying the Chernoff bound,

we know that n/|RY | ·
∑
RY ∈RY I(RY ∩ X , ∅) well approximates

σ (X ,Y) for all X ⊆ C . In other words, the number of RRY -sets

covered by X ⊆ C is proportional to σ (X ,Y). Thus, if the greedy
algorithm selects a subset X ⊆ C of seed content providers given

seed users Y , it is very likely that σ (X ,Y) is large.

5.2 Algorithm design of AIM-α
Now, we are ready to present our algorithm AIM-α . Algorithm 4

depicts AIM-α . We divide Algorithm 4 into two phases.

(1) Basic phase (Line 2). Via Algorithm 2, we obtain a basic solution

and a sequence of random RR-sets generated for later usages.

(2) Post-optimization (Lines 3-16). Lines 3-11 find three candidate

solutions. Then, Lines 12-15 return the best one. In casewe select

the basic solution as the final solution, which rarely happens

in practice, Line 15 inserts nodes c ∈ C into Xα in descending

Algorithm 4: AIM-α
Input :B,G,bc ,bv , ϵ,δ
Output : (X ,Y), σ̂ (X ,Y), approx. ratio (1 − 1/e − ϵ) · ρ

1 δ ′ ← δ/
((nc
α
)
+ 4

)
// Utilize the basic algorithm in Algorithm 2

2 ⟨(Xα ,Yα), σ̂ (Xα ,Yα),R⟩← BasicAlgo(B,G,α ,bv , ϵ,δ
′)

// Refining the basic solution

3 (X1,Y1) ←FindContentProvider(Yα ,bc ,R)

4 ⟨(X1,Y1), σ̂ (X1,Y1),R⟩ ← FindUser(X1,bv , ϵ,δ
′,R)

// Assembling top seed content provider subsets

5 for X not pruned in the basic algo., in desc. order of σ̂ (X ,Y) do
6 Insert c ∈ X into X2 in desc. order of ub[c] until |X2 | = bc

7 Insert c ∈ C into X2 in desc. order of ub[c] until |X2 | = bc
8 ⟨(X2,Y2), σ̂ (X2,Y2),R⟩ ← FindUser(X2,bv , ϵ,δ

′,R)

// Finding seed users first

9
〈
(C,Y ′

3
), σ̂ (C,Y3),R

〉
← FindUser(C,bv , ϵ,δ

′,R)

10 (X3,Y
′
3
) ←FindContentProvider(Y ′

3
,bc ,R)

11 ⟨(X3,Y3), σ̂ (X3,Y3),R⟩ ← FindUser(X3,bv , ϵ,δ
′,R)

// Return the best solution

12 i∗ ← argmaxi ∈{α,1,2,3} σ̂ (Xi ,Yi)

13 ρ ←
σ̂ (Xi∗,Yi∗)
σ̂ (Xα ,Yα)

· αbc
14 if |X | < bc then // happens only if i∗ = α
15 Insert c ∈ C into X in desc. order of ub[c] until |X | = bc

16 return (Xi∗ ,Yi∗), σ̂ (Xi∗ ,Yi∗), (1 − 1/e − ϵ) · ρ

order of ub[c] until Xα has bc nodes. Here, ub[c] is an upper

bound of σ ({c},V) computed in the basic algorithm.

Post-optimization in details. We now describe how we obtain

three candidate solutions and the intuitions behind.

Refining the basic solution (Lines 3-4). Given the basic solution

(Xα ,Yα), we first find a seed content provider set X1 given Yα via

FindContentProvider. Then, we find a seed user set Y1 given X1

via FindUser. If both FindUser and FindContentProvider return
optimal solutions, we expect to have σ (X1,Y1) ≥ σ (X1,Yα) ≥
σ (Xα ,Yα).

Assembling top seed content provider subsets (Lines 5-8). At a high
level, we first fill upX2 with sized-α subsets ofC with high influence

spread if seed users are chosen properly. In case X2 contains less

than bc elements, we insert c ∈ C into X2 in a descending order

of ub[c] until |X2 | = bc . Given X2 ⊆ C , we find seed users Y2
via FindUser. If FindUser returns optimal solutions, we expect to

have σ (X2,Y2) ≥ σ (X2,Yα) ≥ σ (Xα ,Yα) because Xα ⊆ X2.

Finding seed users first (Lines 9-11). First, we find a set of seed

usersY ′
3
via FindUser assumingwe are seeding all content providers.

Then, we find a set of seed content providers X3 given Y ′
3
, and

finalize a set of seed users Y3 given X3. This candidate solution

would have an influence spread larger than σ (Xα ,Yα), if we can
find a subset X3 so that σ (X3,Y

′
3
) ≥ σ (Xα ,Yα), and then we have

σ (X3,Y3) ≥ σ (X3,Y
′
3
) ≥ σ (Xα ,Yα).

Performance analysis. Theorem 5.3 shows the influence spread

of the solution returned by Algorithm 4.

6

Algorithm 5: AIM-∅
Input :B,G,bc ,bv , ϵ,δ
Output : (X ,Y), estimated influence σ̂ (X ,Y)

1 Initialize R as an empty sequence of random RR-sets

// Assembling top seed content provider (adapted)

2 Let ub[c] ← InfluenceUB({c}), ∀c ∈ C
3 Insert c ∈ C into X1 in desc. order of ub[c] until |X1 | = bc
4 ⟨(X1,Y1), σ̂ (X1,Y1),R⟩ ← FindUser(X1,bv , ϵ,δ ,R)

// Finding seed users first

5 ⟨(C,Y2), σ̂ (C,Y2),R⟩ ← FindUser(C,bv , ϵ,δ ,R)

6 (X2,Y2) ←FindContentProvider(Y2,bc ,R)

7 ⟨(X2,Y2), σ̂ (X2,Y2),R⟩ ← FindUser(X2,bv , ϵ,δ ,R)

// Return the better solution

8 i∗ ← argmaxi ∈{1,2} σ̂ (Xi ,Yi)

9 return (Xi∗ ,Yi∗), σ̂ (Xi∗ ,Yi∗)

Theorem 5.3 (AIM-α). Suppose AIM-α returns a solution (X ,Y)
and a data-dependent approximation ratio (1 − 1/e − ϵ) · ρ. We have
ρ ≥ α/bc . Moreover, with a probability of at least 1 − δ , we have

σ (X ,Y) ≥ (1 − 1/e − ϵ) · ρ ·OPT . (4)

Proof. First, because σ̂ (Xi∗ ,Yi∗) ≥ σ̂ (Xα ,Yα), we have ρ ≥
α/bc . Next, we prove that Inequality (4) holds with probability

at least 1 − δ . Suppose we have σ̂ (Xα ,Yα) ≥ (1 − 1/e)(1 − ϵb) ·
OPTα , which happens with probability 1 −

((nc
α
)
+ 1

)
δ ′ according

to Theorem 4.5 about the basic algorithm. Furthermore, suppose we

have σ̂ (Xi ,Yi) ≤ (1+ϵa) ·σ (Xi ,Yi) for all 1 ≤ i ≤ 3, which happens

with a probability of at least 1 − 3δ ′ from Lemma 4.3. Let (Xi∗ ,Yi∗)

be the final solution, we have σ (X ,Y) = σ (Xi∗ ,Yi∗) ≥
σ̂ (Xi∗,Yi∗)
σ̂ (Xα ,Yα)

·

σ̂ (Xα ,Yα)
1+ϵa ≥

σ̂ (Xi∗,Yi∗)
σ̂ (Xα ,Yα)

·
(1−1/e)(1−ϵb)

1+ϵa ·OPTα ≥ (1−1/e−ϵ) ·ρ ·OPT .

The last inequality holds because we have OPTα ≥
α
bc
·OPT from

the submodularity of σ (X ,Y) on X , and we have (1 − 1/e)(1 −
ϵb)/(1 + ϵa) ≥ (1 − 1/e − ϵ) from (1 − 1/e)(ϵa + ϵb)/(1 + ϵa) ≤
ϵ . By union bound, Inequality (4) holds with probability at least

1 −
((nc
α
)
+ 4

)
δ ′ = 1 − δ . □

6 HEURISTIC ALGORITHM
In this section, we present a heuristic solution AIM-∅ to the AIM

problem. In AIM-α , the enumeration step in searching the basic so-

lution is fundamental to the approximation guarantee and the data-

dependent approximation ratio. However, the enumeration step is

the most time-consuming part of AIM-α in our experiments. This

is because we have to find seed users for different α-combinations

of the content provider set C . In practice, we observe that we are

able to identify solutions with large influence spread without the

enumeration step. This motivates us to design a heuristic algorithm

AIM-∅ that sacrifices the performance guarantee in exchange for

the greater efficiency.

Algorithm 5 depicts the AIM-∅ algorithm. It removes the enumer-

ation step from the basic algorithm of AIM-α and adapts the way

we find candidate solutions. In Algorithm 5, Lines 1-4 find the first

candidate solution (X1,Y1). We let set X1 be the set of nodes with

top-bc values of the estimated upper bound ub[·], and we find a set

of seed users Y1 given X1 via FindUser. Lines 5-7 find the second

candidate solution (X2,Y2) in the same way as we obtain the third

candidate solution in Algorithm 4. Finally, the solution with larger

estimated influence spread is returned. In AIM-∅, parameters ϵ and

δ control the balance between the efficiency and effectiveness of

FindUser, FindContentProvider and thus the entire algorithm.

We found in our experiments that ϵ = 0.5 and δ = 0.001 provide a

good balanced efficiency and effectiveness.

Due to the removal of the basic algorithm, AIM-∅ does not pro-
vide approximation guarantee. Nevertheless, our experiments show

that AIM-∅ returns solution with similar influence spread as com-

pared to AIM-α . Moreover, AIM-∅ is muchmore efficient than AIM-α .
Thus, when the performance guarantee is not required, AIM-∅ is
an efficient alternative to AIM-α .

7 EXPERIMENTS
We conduct extensive experiments to test the performance of our

proposed algorithms AIM-α and AIM-∅.

Table 2: Summaries of datasets

Dataset Social network G Bipartite graph B

|V | |E | |C | |M | Type

Enron-Email [15] 37K 368K 20 50K synthetic

Slashdot [18] 77K 828K 20 50K synthetic

BrightKite [9] 58K 428K 49 22K check-in

Gowalla [9] 197K 1.9M 49 47K check-in

YouTube [31] 1.1M 6.0M 16K 129K community

Flickr [20] 1.7M 22.6M 104K 8.5M community

Datasets. Table 2 summaries the datasets. We categorized them

into two classes by how we obtain the bipartite graph.

Partially synthetic datasets: Enron-Email is an email communi-

cation network. Slashdot is a social network. We generate a small

bipartite graph synthetically. To be specific, we randomly generate

50, 000 edges between users and 20 content providers.

Datasets with known community structures: (1) BrightKite and
Gowalla are social networks where users share check-ins to loca-
tions. In both datasets, more than half of the check-ins happened in

the US. We construct a bipartite graph where each state or Washing-

ton, D.C. in mainland US is represented by a content provider node

c . There is an edge between a node c and a user v if v checked-in

to the location represented by c . (2) YouTube and Flickr are social
networks with ground-truth communities. We use the community

affiliation graph as the bipartite graph: a node c ∈ C connects to a

user v if and only if v is a member of the community c .
In social networks, we assign influence probabilities according

to the Weighted Cascade model [14]. For each edge euv ∈ E, we let
puv = 1/d−v where d−v is the indegree of v . In bipartite graphs, each

edge ecv is assigned with a random probabilityMcv ∼ U [0, 1]. For
each dataset, we conduct experiments under both IC and LT model.

Due to space limit, most results where influence propagates under

the LT model are omitted and included in our technical report [1].

Other settings. In FindUser and FindContentProvider, we use
the SSAmethod to find seed users or seed content providers. We let

ϵa = (1+ϵ/4)(1+ϵ/3)− 1 and ϵb = ϵ/(3(1− 1/e)) for SSA. For both

7

Algorithm ●AIM − 1 AIM − 2 AIM − 3 AIM − ∅

●

●

●

●

●

7000

8000

9000

10000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(a) Email-Enron (bc = 5)

●

●
●

●

●

9000

10200

11400

12600

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(b) Email-Enron (bc = 10)

●

●

●

●

●

12500

14500

16500

18500

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(c) Slashdot (bc = 5)

●

●

●

●

●

15000

17500

20000

22500

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(d) Slashdot (bc = 10)

Figure 3: Influence spread on partially synthetic datasets un-
der the IC model.

AIM-α and AIM-∅, we let ϵ = 0.5 and δ = 0.001. Thus, AIM-α returns

a (1− 1/e − ϵ) · α/bc -approximate solution with probability at least

99.9%. We re-evaluate the influence spread of the final solution to

within a relative error of 1%. We repeat each experiment ten times

and report the averaged results. All experiments were conducted

on a Linux machine with an Intel Xeon E5-1620v2@3.70GHz CPU

and 16GB memory.

We do not compare our algorithms with the SDG algorithm [6]

because it cannot run for any of our dataset: Recall that SDG [6] runs
in O(|V |r (log |C |)r (bc + bv)(|C | + |V | + |M | + |E |)ϵ

−r−2
log(1/δ)),

where r is the rank ofM and |M | is the number of non-zero entries

ofM . In all of our dataset, the rank of the bipartite graph adjacency

matrixM is at least 20, thus SDG cannot accomplish the task.

7.1 Partially synthetic datasets
In this subsection, we report results on datasets with synthetic

bipartite graphs. We examine the performance of AIM-α with dif-

ferent values of α and the AIM-∅ algorithm. The algorithm AIM-α
where α = i is denoted by AIM-i (e.g., AIM-1).
Influence spread. Figure 3 and Figure 4 show the influence spread

of solutions returned by AIM-1, AIM-2, AIM-3, and AIM-∅ where the
influence propagates in the social network under the IC model and

the LT model. We observe that all four algorithms return solutions

with comparable influence spread. This implies that although the

approximation guarantee provided by AIM-1 is smaller than those

provided by AIM-α where α > 1, AIM-1 is in practice as effective as

AIM-α where α > 1. The observation that AIM-∅ returns solution
with high influence spread implies that the two candidate solutions

in AIM-∅ adapted from the post-optimization step of AIM-α are

very effective.

Running time. Figure 5 and Figure 6 show the running time of

AIM-1, AIM-2, AIM-3, and AIM-∅ where the influence propagates in

Algorithm ●AIM − 1 AIM − 2 AIM − 3 AIM − ∅

●

●

●

●

●

12000

13250

14500

15750

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(a) Email-Enron (bc = 5)

●

●

●

●

●

14000

15500

17000

18500

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(b) Email-Enron (bc = 10)

●

●

●
●

●

21000

24500

28000

31500

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(c) Slashdot (bc = 5)

●

●

●
●

●

25000

30000

35000

40000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(d) Slashdot (bc = 10)

Figure 4: Influence spread on partially synthetic datasets un-
der the LT model.

Algorithm ●AIM − 1 AIM − 2 AIM − 3 AIM − ∅

●
●● ●●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(a) Email-Enron (bc = 5)

● ● ●
●

●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(b) Email-Enron (bc = 10)

●
●● ● ●

1

10

100

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(c) Slashdot (bc = 5)

● ●
●

●●

1

10

100

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(d) Slashdot (bc = 10)

Figure 5: Running time on partially synthetic datasets under
the IC model (log scale).

the social network under the IC model and the LT model. Given

the two-layer network, bc and bv , the running time of AIM-α and

AIM-∅ is proportional to the number of calls to the FindUser sub-
routine. Algorithm AIM-∅ calls the FindUser subroutineO(1) times.

Algorithm AIM-α calls the FindUser subroutine O(
(nc
α
)
) times. Ac-

cordingly, Figure 5 and Figure 6 show that AIM-∅ runs faster than

8

Table 3: Comparing the approximation ratio (1 − 1/e − ϵ) · ρ and (1 − 1/e − ϵ) · α/bc on partially synthetic datasets.

Ratio Dataset (Model) bc = 5, bv = 200 bc = 5, bv = 1000 bc = 10, bv = 200 bc = 10, bv = 1000

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3 α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

ρ

Enron-Email (IC) 0.38 0.60 0.73 0.38 0.58 0.73 0.23 0.38 0.45 0.23 0.38 0.45

Enron-Email (LT) 0.38 0.56 0.70 0.38 0.54 0.69 0.23 0.36 0.45 0.23 0.30 0.42

Slashdot (IC) 0.38 0.53 0.68 0.45 0.61 0.74 0.23 0.30 0.38 0.26 0.38 0.45

Slashdot (LT) 0.42 0.58 0.70 0.45 0.61 0.75 0.23 0.37 0.45 0.30 0.38 0.45

α/bc all datasets 0.20 0.40 0.60 0.20 0.40 0.60 0.10 0.20 0.30 0.10 0.20 0.30

Algorithm ●AIM − 1 AIM − 2 AIM − 3 AIM − ∅

● ●
●

● ●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(a) Email-Enron (bc = 5)

●
● ●

● ●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(b) Email-Enron (bc = 10)

● ● ● ● ●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(c) Slashdot (bc = 5)

● ● ● ● ●

0.1

1.0

10.0

100.0

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(d) Slashdot (bc = 10)

Figure 6: Running time on partially synthetic datasets under
the LT model (log scale).

AIM-α for all tested α , and the running time of AIM-α grows ex-

ponentially with α . Moreover, Figure 5 and Figure 6 show that the

running time increases when the number of seed users bv increases.

This is because FindUser takes more time to find more seed users

when bv increases. To conclude, AIM-∅ is a good choice to the AIM
problem if performance guarantee is not needed. Otherwise, AIM-1
is an efficient solution.

Approximation ratio of AIM-α . AIM-α returns a solution (X ,Y)
together with an approximation ratio (1−1/e−ϵ)·ρ where ρ ≥ α/bc .
We have σ (X ,Y) ≥ (1 − 1/e − ϵ) · ρ · OPT with high probability.

Table 3 compares the values of ρ and α/bc . We observe that ρ is up

to three times as large as α/bc . Recall that Algorithm 4 computes ρ

as follows: ρ =
σ̂ (Xi∗,Yi∗)
σ̂ (Xα ,Yα)

· αbc
. When α < bc , the value of ρ is larger

than α/bc meaning that the first fraction is always greater than

one, which implies that the post-optimization step always finds a

final solution with a larger influence spread as compared with the

basic solution. From Table 3, we can conclude that we can always

obtain an approximation guarantee better than (1 − 1/e − ϵ) · α/bc .

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

●

●
●

●
●

●

●
●

●
●

7000

10000

13000

16000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(a) Brightkite

● ●

●

●
●

●
●

●

●
●

18000

25000

32000

39000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(b) Gowalla

●

●
● ●

●

●

●
● ●

●

30000

60000

90000

120000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(c) YouTube

●

●

●

●

●

●

●

●

●

●

130000

180000

230000

280000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(d) Flickr

Figure 7: Influence spread on datasets with known commu-
nities under the IC model.

7.2 Datasets with known communities
Now, we report results on datasets where the bipartite graphs are

constructed according to check-ins of users or ground-truth com-

munities. To avoid cluttering the results, for AIM-α , we only report

performance of AIM-1.
Influence spread. Figure 7 and Figure 8 show the influence spread

of solution returned by AIM-1 and AIM-∅, with varying number

of seed content providers bc and seed users bv . We observe that

AIM-1 and AIM-∅ always return solutions with similar influence

spread. Thus, both AIM-1 and AIM-∅ are very effective.

Pruning strategy. Table 4 shows the number and the fraction of

subsets X ⊆ C not pruned by the basic algorithm AIM-1. Note that
the fraction of subsets not pruned is the number of such subsets

over

(nc
α
)
= nc (α = 1). Table 4 shows that more than 88.37%

of subsets are pruned for BrightKite and Gowalla, and more than

99.70% subsets are pruned for YouTube and Flickr . Thus, our pruning
strategy in AIM-1 is very effective, and we only have to find seed

users for a very small fraction of subsets. The reason behind the

effectiveness of pruning is as follows. We observe from our datasets

that only a few content providers connect to many users; and most

9

Table 4: The averaged number and fraction of subsetsX⊆C for which we find seed users (i.e., not pruned) in the basic algorithm
of AIM-1.

Dataset (Model) bc = 1 bc = 5 bc = 10

bv = 200 bv = 600 bv = 1000 bv = 200 bv = 600 bv = 1000 bv = 200 bv = 600 bv = 1000

BrightKite (IC) 5.90 (12.04%) 3.00 (6.12%) 3.00 (6.12%) 5.70 (11.63%) 3.00 (6.12%) 2.50 (5.10%) 5.90 (12.04%) 3.00 (6.12%) 2.90 (5.92%)

BrightKite (LT) 3.90 (7.96%) 3.00 (6.12%) 1.30 (2.65%) 4.00 (8.16%) 2.70 (5.51%) 1.30 (2.65%) 4.30 (8.78%) 2.80 (5.71%) 1.40 (2.86%)

Gowalla (IC) 4.40 (8.98%) 2.80 (5.71%) 2.10 (4.29%) 4.30 (8.78%) 2.80 (5.71%) 2.30 (4.69%) 4.60 (9.39%) 2.80 (5.71%) 2.20 (4.49%)

Gowalla (LT) 3.40 (6.94%) 2.20 (4.49%) 2.00 (4.08%) 3.40 (6.94%) 2.20 (4.49%) 2.00 (4.08%) 3.40 (6.94%) 2.10 (4.29%) 2.00 (4.08%)

YouTube (IC) 6.90 (0.04%) 3.00 (0.02%) 3.00 (0.02%) 6.70 (0.04%) 3.20 (0.02%) 3.00 (0.02%) 6.60 (0.04%) 3.00 (0.02%) 3.00 (0.02%)

YouTube (LT) 5.60 (0.03%) 3.00 (0.02%) 3.00 (0.02%) 5.50 (0.03%) 3.00 (0.02%) 3.00 (0.02%) 5.50 (0.03%) 3.00 (0.02%) 3.00 (0.02%)

Flickr (IC) 315.00 (0.30%) 119.00 (0.11%) 75.10 (0.07%) 308.20 (0.30%) 119.40 (0.12%) 72.30 (0.07%) 312.40 (0.30%) 122.40 (0.12%) 74.40 (0.07%)

Flickr (LT) 244.40 (0.24%) 84.90 (0.08%) 51.90 (0.05%) 243.50 (0.23%) 85.60 (0.08%) 52.20 (0.05%) 244.00 (0.24%) 84.00 (0.08%) 50.50 (0.05%)

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

●
●

●

●

●
●

●

●

●

●

11000

15000

19000

23000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(a) Brightkite

●
●

●

●

●
●

●

●

●

●

30000

40000

50000

60000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(b) Gowalla

●

●
●

●
●

●

●
●

●
●

40000

80000

120000

160000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(c) YouTube

●

●
●

●
●

●

●
●

●
●

200000

300000

400000

500000

200 400 600 800 1000
Number of seed users (bv)

In
flu

en
ce

 s
pr

ea
d

(d) Flickr

Figure 8: Influence spread on datasets with known commu-
nities under the LT model.

content providers connect to a relatively smaller number of users. In

BrightKite, California has 454K check-ins, Texas has 216K check-ins,

only five states have more than 100K check-ins, and the averaged

number of check-ins is only about 51K . In Gowalla, Texas has 790K
check-ins, California has 571K check-ins, only six states have more

than 100K check-ins, and the averaged number of check-ins is only

around 64K . In YouTube and Flickr , “content providers” corresponds
to communities; there are some very large communities with large

amounts of users, but most communities have a relatively smaller

size. In AIM-1, under the presence of content providers connecting
to a large number of users, content providers with small degrees

are not likely to appear in either the basic solution or the final

solution. The pruning strategy of Algorithm 2 is able to prune these

content providers with small degrees, and thus a majority of content

providers could be pruned.

Computational costs. Figure 9 and Figure 10 show the running

time of AIM-1 and AIM-∅ where influence propagates in social net-

works under the IC model and the LT model. Both of our algorithms

are efficient. Moreover, AIM-∅ is more efficient due to the removal

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

● ●

●

● ●

●

● ●

●

●

0.50

0.75

1.00

1.25

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(a) Brightkite

●
●

●
●

●

●

●

●
●

●

1

3

5

7

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(b) Gowalla

●
● ●

●

●

●
●

● ●
●

4

8

12

16

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(c) YouTube

●

●
● ●●

●
●● ●●10

40

70

100

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)
(d) Flickr

Figure 9: Running time on datasets with known communi-
ties under the IC model.

of the enumeration part, which plays a fundamental role in provid-

ing the performance guarantee of AIM-1. Again, the running time

of AIM-1 is proportional to the number of calls to the FindUser.
For BrightKite, Gowalla and YouTube, the gaps between the running

time of AIM-1 and AIM-∅ are not very large, especially when bv is

large. This is because the number of calls to FindUser is only a few
(less than ten), as shown in Table 4. For Flickr , the gaps between the

running time of AIM-1 and AIM-∅ are relatively larger than other

datasets. This is because the number of calls to FindUser is tens or

hundreds. Moreover, for each bc , we observe that the gaps diminish

when bv increases in all four datasets. This is mainly because the

number of calls to the FindUser subroutine decreases when bv
increases, as shown in Table 4.

Figure 11 and Figure 12 show the memory usage of AIM-α and

AIM-∅. We also label the “intial memory” of our algorithms. This is

the memory usage of our algorithm right after we have loaded the

datasets into memory. Experimental results show that the memory

usage of both our algorithms are at most three times as large as the

memory needed to loading the dataset. Moreover, AIM-1 consumes a

10

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

●

●

●● ●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(a) Brightkite

● ●
●

●

●

●

●

●

●

●

0.4

0.7

1.0

1.3

1.6

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(b) Gowalla

●

● ●● ●

●
● ●

● ●

1

2

3

4

5

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(c) YouTube

●

● ●
●

●

● ● ●● ●5

20

35

50

65

200 400 600 800 1000
Number of seed users (bv)

R
un

ni
ng

 ti
m

e
(s

)

(d) Flickr

Figure 10: Running time on datasets with known communi-
ties under the LT model.

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

● ●

●

● ●

●

● ●

●
●

Init. mem.: 0.02
0.02

0.03

0.04

0.05

0.06

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(a) Brightkite

●
●

● ● ●
●

●

●
●

●

Init. mem.: 0.06
0.06

0.09

0.12

0.15

0.18

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(b) Gowalla

●
● ●

●●

● ● ● ●●

Init. mem.: 0.25
0.2500

0.3125

0.3750

0.4375

0.5000

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(c) YouTube

●

●

●

●

●

●
●

●
●

●

Init. mem.: 0.90
0.90

1.35

1.80

2.25

2.70

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(d) Flickr

Figure 11: Memory usage on datasets with known communi-
ties under the IC model.

bit more memory as compared to AIM-∅. This is reasonable because
AIM-1 may require more random RR-sets (or, RRX -sets, RRY -sets)

to provide the approximation guarantee.

Approximation ratio. Table 5 show the approximation guarantee

of AIM-1. The data-dependent approximation ratio (1 − 1/e − ϵ) · ρ
is always larger than (1 − 1/e − ϵ) · α/bc . For bc = 5 and bc = 10,

ρ (resp. (1 − 1/e − ϵ) · ρ) is up to two times as large as α/bc (resp.

Algorithm AIM − 1 AIM − ∅ bc ●1 5 10

●
●

●● ●

●

●

●●
●

Init. mem.: 0.02
0.02

0.03

0.04

0.05

0.06

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(a) Brightkite

● ●●
●

●
● ●

●●
●

Init. mem.: 0.06
0.06

0.09

0.12

0.15

0.18

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(b) Gowalla

●
● ●● ●

● ● ●● ●

Init. mem.: 0.25
0.2500

0.3125

0.3750

0.4375

0.5000

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(c) YouTube

● ● ●● ●

●
● ●

● ●

Init. mem.: 0.90
0.90

1.35

1.80

2.25

2.70

200 400 600 800 1000
Number of seed users (bv)

M
em

or
y

us
ag

e
(G

B
)

(d) Flickr

Figure 12: Memory usage on datasets with known communi-
ties under the LT model.

Table 5: Approximation ratios (1 − 1/e − ϵ) · ρ and (1 − 1/e −
ϵ) · α/bc on datasets with known community structures.

Ratio Dataset bc=5 bc=10

(Model) bv=200 bv=1000 bv=200 bv=1000

ρ

BrightKite (IC) 0.26 0.30 0.15 0.15

BrightKite (LT) 0.29 0.30 0.15 0.15

Gowalla (IC) 0.30 0.30 0.15 0.15

Gowalla (LT) 0.32 0.30 0.15 0.15

YouTube (IC) 0.39 0.39 0.23 0.23

YouTube (LT) 0.40 0.45 0.23 0.29

Flickr (IC) 0.30 0.30 0.15 0.15

Flickr (LT) 0.30 0.30 0.15 0.15

α/bc all datasets 0.20 0.20 0.10 0.10

(1 − 1/e − ϵ) · α/bc). For bc = 1, we have ρ = α/bc = 1 in AIM-1.
From Table 5 and Table 3, we can conclude that AIM-α returns

solutions with a data-dependent approximation guarantee larger

than (1 − 1/e − ϵ) · α/bc when α < bc .

8 RELATEDWORK
We have summarized works related to the classical influence max-

imization problems in Section 2. In this section, we summarize

two lines of studies related to the AIM problem [6] we study in

this paper. A series of works studied the “adaptive seeding” prob-

lem [3, 12, 16, 24, 25, 28]. In these problems, the seeding process

has multiple stages. Initially, only some budget is used to target

influencers. The remaining budget will be spent after observing the

influence diffusion. These “adaptive seeding” problems are similar

to AIM in that they both consider a multi-stage influence maxi-

mization. However, in AIM, we simultaneously select both seed

11

content providers and seed consumers. And, unlike the adaptive

seeding problem, the AIM problem is inapproximable. Another line

of related work studied how to increase acceptance probabilities of

important users [19, 30] or how to inject links to social networks

via friend recommendation [2, 5, 22, 23] so to boost the influence

spread. In these works, boosted users or injected links help to in-

crease the influence spread. Similarly, in AIM, seed users help to

spread the influence of seed content providers to other users in the

social network. The main difference is that seed content providers

cannot influence non-seed users directly in AIM.

9 CONCLUSION
In this work, we design efficient algorithms for solving the Am-
phibious Influence Maximization (AIM) problem. Given a bipartite

graph B = (C,V ,M) and a social networkG = (V ,E), AIM asks to

select bc seed content providers X ⊆ C and bv seed users Y ⊆ V so

that the expected influence spread σ (X ,Y) is maximized.

We develop AIM-α that returns (1−1/e−ϵ)·α/bc -approximate so-

lution with high probability. Together with a solution (X ,Y), AIM-α
also returns a data-dependent approximation ratio (1 − 1/e − ϵ) · ρ
indicating that (X ,Y) is a (1−1/e−ϵ) ·ρ-approximate solution with

high probability. We also present an efficient heuristic algorithm

AIM-∅. We conduct extensive experiments on datasets with real

social networks and bipartite graphs constructed in various ways.

Experimental results demonstrate the superiority of AIM-α (espe-

cially AIM-1) and AIM-∅. In particular, we show that AIM-1 returns
solution with similar influence spread as compared to AIM-α with

α > 1. Thus, if performance guarantee is needed, AIM-1 is an effi-

cient choice. For the heuristic algorithm AIM-∅, it is more efficient

than AIM-1, and it returns solution with influence spread similar to

the solution returned by AIM-α in all our experiments. Thus, if one

is indifferent about the performance guarantee, AIM-∅ is a good
choice to the AIM problem. Moreover, if we have a dynamic two-

layer network, we could update seeds via the much more efficient
AIM-∅ algorithm, and it is very likely that the updated seeds have

similar influence spread as compared to what would be returned

by the relatively less efficient algorithm AIM-α .

REFERENCES
[1] Technical report: Where & who should you advertise? influence maximiza-

tion for two-layer networks. https://www.dropbox.com/s/jtkihbtpmkzolcl/

TwoLayerIMTechReport.pdf?dl=0, 2017.

[2] S. Antaris, D. Rafailidis, and A. Nanopoulos. Link injection for boosting informa-

tion spread in social networks. SNAM, 4(1), 2014.

[3] A. Badanidiyuru, C. Papadimitriou, A. Rubinstein, L. Seeman, and Y. Singer.

Locally adaptive optimization: Adaptive seeding for monotone submodular func-

tions. In SODA, 2016.
[4] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in

nearly optimal time. In SODA, 2014.
[5] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt. Recommendations to boost content

spread in social networks. In WWW, 2012.

[6] W. Chen, F. Li, T. Lin, and A. Rubinstein. Combining traditional marketing and

viral marketing with amphibious influence maximization. In EC, 2015.
[7] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent

viral marketing in large-scale social networks. In KDD, 2010.
[8] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social

networks under the linear threshold model. In ICDM, 2010.

[9] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in

location-based social networks. In KDD, 2011.
[10] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based influence maxi-

mization and computation: Scaling up with guarantees. In CIKM, 2014.

[11] A. Goyal,W. Lu, and L. V. S. Lakshmanan. Celf++: optimizing the greedy algorithm

for influence maximization in social networks. In WWW, 2011.

[12] T. Horel and Y. Singer. Scalable methods for adaptively seeding a social network.

In WWW, 2015.

[13] K. Huang, S. Wang, G. S. Bevilacqua, X. Xiao, and L. V. S. Lakshmanan. Revisiting

the stop-and-stare algorithms for influence maximization. PVLDB, 10(9):913–924,
2017.

[14] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through

a social network. In KDD, 2003.
[15] B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.
[16] S. Lattanzi and Y. Singer. The power of random neighbors in social networks. In

WSDM, 2015.

[17] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-effective outbreak detection in networks. In ICDM, 2007.

[18] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure

in large networks: Natural cluster sizes and the absence of large well-defined

clusters. Internet Mathematics, 6(1), 2009.
[19] Y. Lin, W. Chen, and J. C. S. Lui. Boosting information spread: An algorithmic

approach. In ICDE, 2017.
[20] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Mea-

surement and analysis of online social networks. In SIGCOMM, 2007.

[21] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling

algorithms for viral marketing in billion-scale networks (exteneded version of

the same sigmod’16 conference paper). CoRR, abs/1605.07990v3, 2016.
[22] D. Rafailidis and A. Nanopoulos. Crossing the boundaries of communities via

limited link injection for information diffusion in social networks. In WWW
Companion, 2015.

[23] D. Rafailidis, A. Nanopoulos, and E. Constantinou. "with a little help from new

friends". Journal of System and Software, 98(C), 2014.
[24] A. Rubinstein, L. Seeman, and Y. Singer. Approximability of adaptive seeding

under knapsack constraints. In EC, 2015.
[25] L. Seeman and Y. Singer. Adaptive seeding in social networks. In FOCS, 2013.
[26] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time com-

plexity meets practical efficiency. In SIGMOD, 2014.
[27] Y. Tang, X. Xiao, and Y. Shi. Influence maximization in near-linear time: A

martingale approach. In SIGMOD, 2015.
[28] G. Tong, W. Wu, S. Tang, and D.-Z. Du. Adaptive influence maximization in

dynamic social networks. IEEE/ACM Transactions on Networking, PP(99), 2016.
[29] X. Wang, Y. Zhang, W. Zhang, X. Lin, and C. Chen. Bring order into the samples:

A novel scalable method for influence maximization. TKDE, 2016.
[30] D.-N. Yang, H.-J. Hung, W.-C. Lee, and W. Chen. Maximizing acceptance proba-

bility for active friending in online social networks. In KDD, 2013.
[31] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1), 2015.

APPENDIX
Proof of Lemma 4.4. By Chernoff bound, if S is the sum of θ

independent {0, 1} variables with mean µ, we have Pr[S/θ ≤ µ −
ϵ] ≤ exp(−2θϵ2) for all 0 < ϵ < 1. Let sumX = σ̂ (X ,V) · θ/n. By
definition of the RRX -set, sumX is the sum of θ independent {0, 1}

variables with the mean of σ (X ,V)/n. By Chernoff bound, we have

Pr

[
n ·

(
sumX /θ +

√
ln(1/δ)/(2θ)

)
< σ (X ,V)

]
= Pr

[
sumX /θ ≤ σ (X ,V)/n −

√
ln(1/δ)/(2θ)

]
≤ δ .

Thus, the returned value is an upper bound of σ (X ,V) with a prob-

ability of at least 1 − δ . □

Proof of Theorem 4.5. We first define two critical events.

• Event 1: In each call to FindUser in Algorithm 2 given X ⊆ C ,
let Y be the returned set of seed users, both of the following two

inequalities hold (inequalities in Lemma 4.3),

(1 + ϵa) · σ (X ,Y) ≥ σ̂ (X ,Y), (5)

σ̂ (X ,Y ∗) ≥ (1 − ϵb) · σ (X ,Y
∗), (6)

where (1 − 1/e)(ϵa + ϵb)/(1 + ϵa) ≤ ϵ .
• Event 2: Ifα = 1, we haveub[c∗] ≥ σ (X ∗α ,V)where c

∗
is the only

element in X ∗α . If α > 1, while checking whether we can prune

X ∗α , the estimated upper bound ubX in Line 22 of Algorithm 2

satisfies ubX ≥ σ (X ∗α ,V).

12

https://www.dropbox.com/s/jtkihbtpmkzolcl/TwoLayerIMTechReport.pdf?dl=0
https://www.dropbox.com/s/jtkihbtpmkzolcl/TwoLayerIMTechReport.pdf?dl=0

From Lemma 4.3, the first event happens with proabaiblity at least

1−
(nc
α
)
·δ . From Lemma 4.4, the second event happenswith proabaib-

lity at least 1 − δ . With probability 1 −
((nc
α
)
+ 1

)
, both the above

events happen. Now, suppose both events happen. At all times dur-

ing the execution of Algorithm 2, the pruning-threshold is assigned

to be σ̂ (Xα ,Yα)/(1 + ϵa) which is as most σ (Xα ,Yα) according
to Inequality (5). Therefore, the pruning-threshold never exceeds

σ (X ∗α ,V), and we know that X ∗α must not be pruned.

Let Y ′ be the set of users we select for X ∗α , we have

σ̂ (Xα ,Yα) ≥ σ̂ (X ∗α ,Y
′)

≥(1 − 1/e) · max

Y ⊆V , |Y |=bv
σ̂ (X ∗α ,Y) (submodularity of σ̂)

=(1 − 1/e) · σ̂ (X ∗α ,Y
∗
α) (optimality of Y ∗)

≥(1 − 1/e)(1 − ϵb) · σ (X
∗
α ,Y

∗
α) (Inequality (6))

=(1 − 1/e)(1 − ϵb) ·OPTα

We show by contradiction that σ (Xα ,Yα) ≥ (1 − 1/e − ϵ) ·OPTα .
Assume σ (Xα ,Yα) < (1 − 1/e − ϵ) ·OPTα , we have

σ (Xα ,Yα) ≥ σ̂ (Xα ,Yα) − ϵa · σ (Xα ,Yα) (Inequality (5))

≥ (1 − 1/e)(1 − ϵb) ·OPTα − ϵa · (1 − 1/e − ϵ) ·OPTα

≥

{
(1 − 1/e)

(
1 −

(
ϵ(1 + ϵa)

1 − 1/e
− ϵa

))
− ϵa (1 − 1/e − ϵ)

}
·OPTα

= (1 − 1/e − ϵ) ·OPTα ,

which contradicts with the assumption. □

13

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Influence maximization
	2.2 State-of-the-art IM techniques

	3 Problem Definition
	4 A Basic Algorithm
	4.1 Influence estimation
	4.2 Subroutine for finding seed users
	4.3 Design of the basic algorithm

	5 Approximation Algorithm
	5.1 Subroutine for finding seed content providers
	5.2 Algorithm design of AIM-

	6 Heuristic Algorithm
	7 Experiments
	7.1 Partially synthetic datasets
	7.2 Datasets with known communities

	8 Related Work
	9 Conclusion
	References

