

I/O Efficient Algorithms for Exact Distance Queries on Disk-Resident Dynamic Graphs

Yishi Lin, Xiaowei Chen, John C.S. Lui The Chinese University of Hong Kong

Distance on Graphs

Distance is fundamental

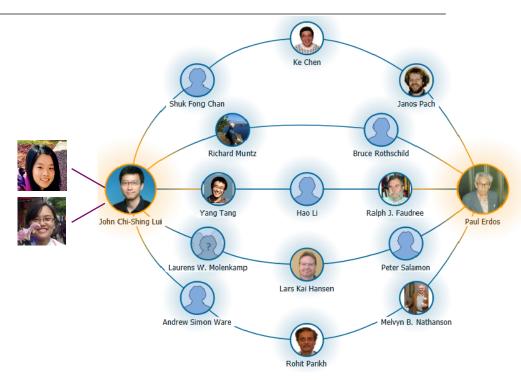
- social network analysis
- communication networks
- road networks
- biological networks
- o ...

Real graphs

- large
- dynamic

Trade off

indexing cost / query efficiency



Erdős number: the collaborative distance between mathematician Paul Erdős and another person.

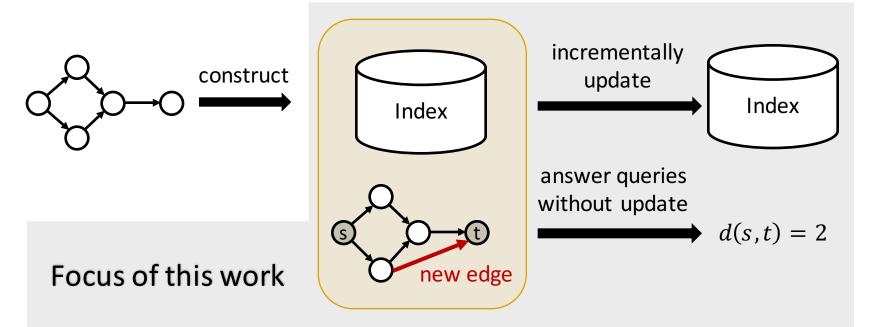
The co-author path is obtained from

 $\underline{\text{http://academic.research.microsoft.com/VisualExplorer\#1022791\&1112639}}$

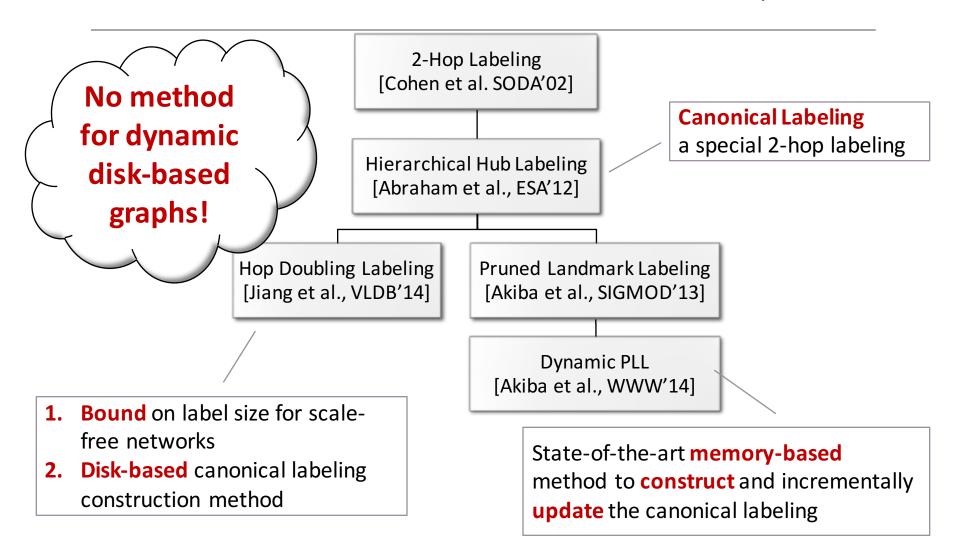
Our Focus

Given a **dynamic disk-resident** graph G=(V,E)

- 1. Construct & incrementally update an index
- 2. Answer exact distance $d_G(s, t)$ in the latest graph



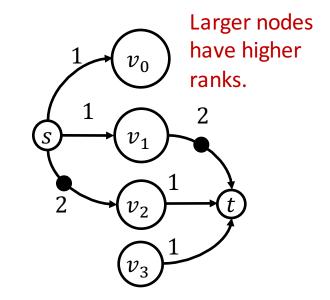
Previous Methods for exact distance queries



Canonical Labeling for distance queries

Data structure (given a ranking *r*)

- \circ In-label and out-label for each node u
- $\cdot L_{out}(\mathbf{u}) = \{(v_1, d_1), (v_2, d_2), \dots\}, d_i = d(u, v_i)$
- $(v,d) \in L_{out}(u) \Leftrightarrow v$ has the highest rank among all shortest paths from u to v
- ${}^{\circ}$ $L_{in}(u) = \{(w_1, d_1), (w_2, d_2), \dots\}, d_i = d(w_i, u)$ $(v, d) \in L_{in}(u) \iff v \text{ has the highest rank among all shortest paths from } v \text{ to } u$



$$\begin{split} L_{out}(s) &= \{(s,0), (v_0,1), (v_1,1), (v_2,2)\} \\ L_{in}(t) &= \{(t,0), (v_1,2), (v_2,1), (v_3,1)\} \end{split}$$

Other notations:

$$(u \to \underline{v}, d) \Leftrightarrow (u, d) \in L_{in}(v), (\underline{u} \to v, d) \Leftrightarrow (v, d) \in L_{out}(u)$$

$$(u \to v, d) \Leftrightarrow (u, d) \in L_{in}(v) \text{ or } (v, d) \in L_{out}(u)$$

Canonical Labeling for distance queries

Data structure

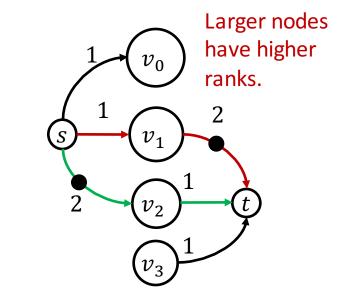
- $\cdot L_{out}(u) = \{(v_1, d_1), (v_2, d_2), ...\}, d_i = d(u, v_i)$
- $L_{in}(u) = \{(w_1, d_1), (w_2, d_2), \dots\}, d_i = d(w_i, u)$

Query algorithm QUERY(L, s, t)

- $\circ \min\{d_1 + d_2 | (w, d_1) \in L_{out}(s), (w, d_2) \in L_{in}(t)\}$
- 2-hop paths using labels

Properties

- Correctness: Distance queries are answered correctly.
- Minimum: There is no non-necessary entry.



$$L_{out}(s) = \{(s,0), (v_0,1), (v_1,1), (v_2,2)\}$$

$$L_{in}(t) = \{(t,0), (v_1,2), (v_2,1), (v_3,1)\}$$

Incremental Maintenance Objective:

Given a canonical labeling L^{t-1} for graph G_{t-1} based on rank r, update L^{t-1} and obtain an r-based canonical labeling L for the latest graph G_t .

Contribution

We consider disk-resident dynamic graphs.

Update methods

- Single edge update algorithm
- Batch update algorithm

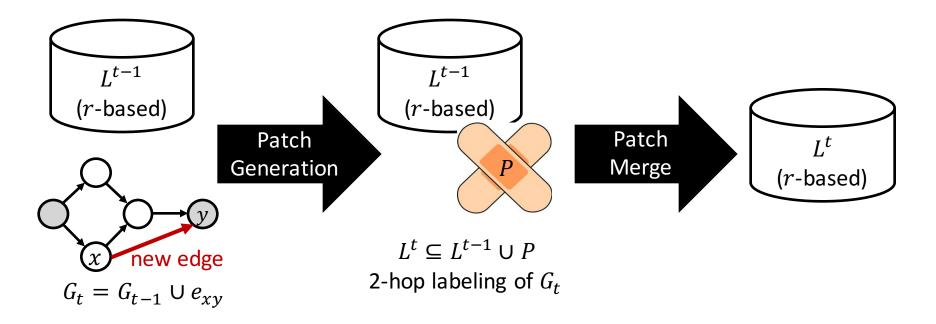
Latest distance query

 Answer exact distance queries with the outdated labeling and new edges (without update)

Single Edge Update (Contribution 1)

Two phases

- Patch generation: to answer distance queries correctly
- Patch merge: to remove non-necessary entries



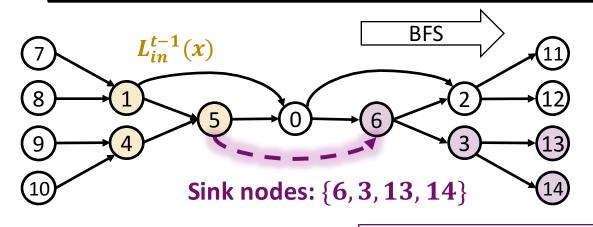
Single Edge Update: Patch Generation

Patch Generation (focus on the patch P_{in} of L_{in}^{t-1})

• New edge: e_{xy} .

- (when) $P_{in}(v) \neq \emptyset \Rightarrow$ distance from x to v decreases (v is a "sink node")
- (how) $P_{in}(v)$ should contain $(u,d) \Rightarrow (u,d_{t-1}(u,x)) \in L_{in}^{t-1}(x)$

BFS method to generate entries in the patch P_{in}



visit node 6

node 6 is a sink node add (5,1) and (4,2) to $P_{in}(6)$ visit node 2, not a sink, stop visit node 3, ...

• • •

I/O cost: O(|sink nodes and their outneighbors|)

Single Edge Update: Patch Merge

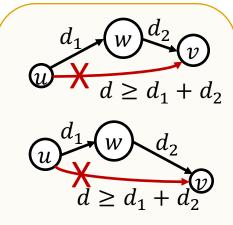
Patch Merge

- \circ Goal: $L^t = merge(L^{t-1}, P)$
- \circ Although P is minimum, $L^{t-1} \cup P$ may not be minimum.
- **Pruning rule**: we remove an entry $(u \rightarrow v, d)$ if there exist $(\underline{u} \rightarrow w, d_1)$ and $(w \rightarrow \underline{v}, d_2)$ so that $d_1 > 0, d_2 > 0$ and $d_1 + d_2 \leq d$.
 - Standard pruning rule for the canonical labeling.
- Merge with pruning: using block-nested loops

$$\circ$$
 I/O cost: $O\left(\left\lceil \frac{|L^{t-1}|+|P|}{M}\right\rceil \cdot \left\lceil \frac{|L^{t-1}|+|P|}{B}\right\rceil\right)$

Refinements for the Single edge update method

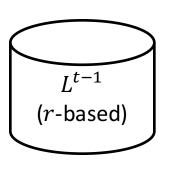
lazy patch merge, label prefetch



Larger nodes have higher ranks.

Batch Update (Contribution 2)

Motivation

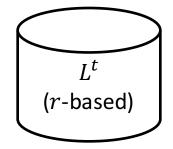


A set of new edges E_{new}

Single edge update method

I/O cost
$$\sim |E_{new}|$$

Batch update method



 $G = G_{t-1} + E_{new}$

Graph G_{t-1}

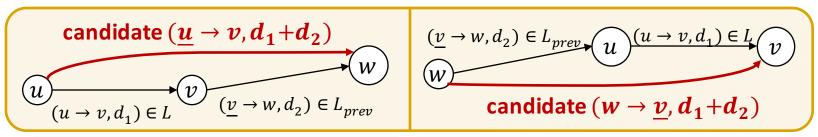
Batch Update: High Level Ideas

Iteratively generate entries in *L*

- each iteration = candidate generation + candidate merge
- \circ utilize entries in L^{t-1}

Candidate generation (to correctly answer distance queries)

- \circ L_{cand} : candidates generated by "concatenate" existing entries
- The 0-th iteration: L_{cand} : = $new\ edges$.



Candidate merge

• $L := merge(L, L_{cand})$ (\approx the patch merge phase for the single edge update method)

I/O Cost per iteration:
$$O\left(\left\lceil \frac{|L| + |L_{cand}|}{M} \right\rceil \cdot \left\lceil \frac{|L| + |L_{cand}|}{B} \right\rceil\right)$$
 (Lemma 7)

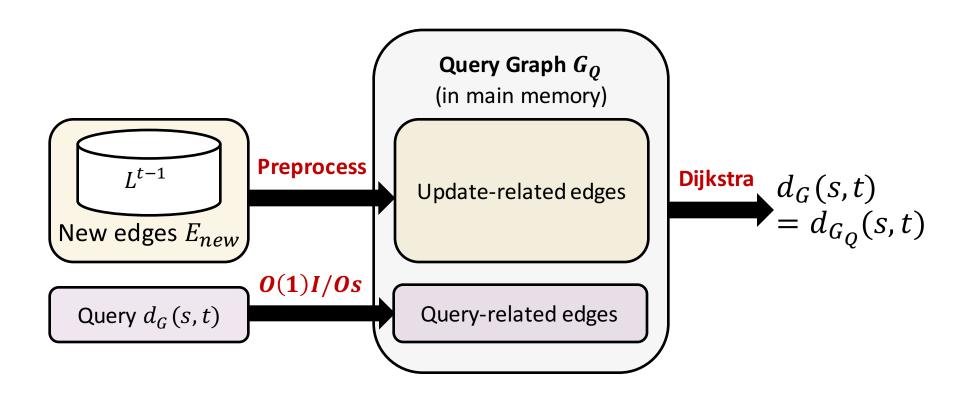
Latest Distance Query (Contribution 3)

Can we answer queries before the update finishes?

Latest Distance Query

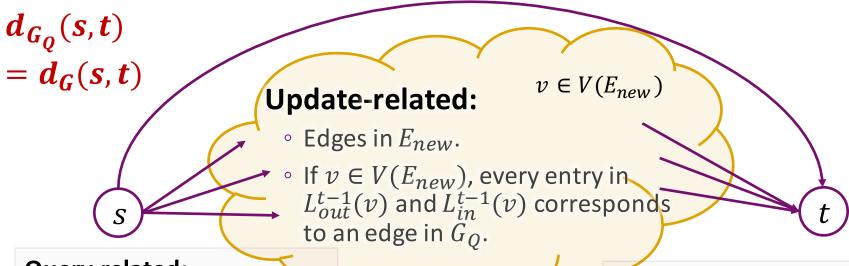
- We could answer distance queries with the outdated labeling.
- We need not wait until the update finishes.
- We need not update the labeling, if we do not want to.
- It works for all 2-hop labeling, not only for the canonical labeling.

Latest Distance Query: framework



Latest Distance Query: Query Graph G_Q

Query-related: edge $s \to t$ with distance $QUERY(L^{t-1}, s, t)$



Query-related:

 $\forall v \in V_{new}$, edge $s \to v$, distance $QUERY(L^{t-1}, s, v)$

Query-related:

 $\forall v \in V_{new}$, edge $v \to t$, distance $QUERY(L^{t-1}, v, t)$

 L^{t-1} : 2-hop labeling for G_{t-1} / E_{new} : new edges / $V(E_{new})$: endpoints of new edges

Experiments: Update Time

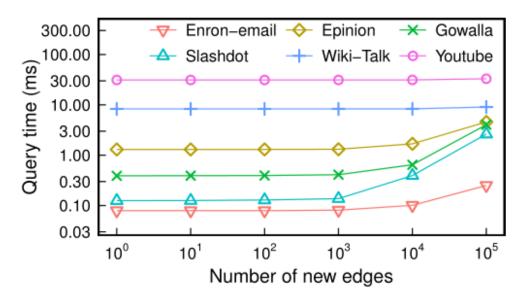


Figure. Comparison among update methods and the reconstruction method.

Remarks:

- We treat all datasets as directed networks.
- 2. For Gowalla and Wiki-Talk, we randomly generate new edges. For Youtube, edges come with timestamps.
- 3. Experiments are conducted using 4GB memory on a Linux machine with Intel 3.20GHz CPU and 7200 RPM SATA hard disk.

Experiments: Query Time



Dataset	V	$ E_{t-1} $
Youtube	3.2 <i>M</i>	9.4 <i>M</i>
Wiki-Talk	2.4 <i>M</i>	5.0 <i>M</i>
Epinion	76 <i>K</i>	509 <i>K</i>
Gowalla	197 <i>K</i>	1.9 <i>M</i>
Slashdot	77 <i>K</i>	905 <i>K</i>
Enron-email	87 <i>K</i>	160 <i>K</i>

Figure. Results of query algorithm on real datasets.

Table. Real datasets.

Remarks:

- 1. For each dataset, we answer 5K random distance queries and report the average query time.
- 2. We clear the file system memory cache before answering each query. So we are actually measuring the worst case query time because every I/O request results in a physical I/O.

Conclusion

Distance queries of disk-resident dynamic graphs

based on the canonical labeling

Contribution 1: Single Edge Update method

Contribution 2: **Batch Update** method

Contribution 3: Latest Distance Query method

based on the outdated labeling

Future work

 Update methods of the canonical labeling for memory-based / diskbased fully dynamic graphs (both insertion and deletion of edges are allowed)

香港中文大學 The Chinese University of Hong Kong