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Problem Overview
Motivation

Some marketing strategies “boost” customers so that they are more likely to be influenced
by friends or to influence their friends.
• E.g., customer incentive programs, social media advertising, referral marketing

puv . To simplify the presentation, we focus on the influence
boosting model in Definition 1.
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Fig. 1: Example of the influence boosting model (S ={s}).

Let �S(B) be the expected influence spread of seeds in S
upon boosting nodes in B. We refer to �S(B) as the boosted
influence spread. Let �S(B) = �S(B) � �S(;). We refer to
�S(B) as the boost of influence spread of B, or simply the
boost of B. To illustrate, consider the example in Figure 1. We
have �S(;) = 1.22, which is essentially the influence spread
of S = {s} in the IC model. When we boost node v0, we
have �S({v0}) = 1 + 0.4 + 0.04 = 1.44, and �S({v0}) =
1.44�1.22 = 0.22. We now formulate the k-boosting problem.

Definition 2 (k-Boosting Problem). Given a directed graph
G = (V, E), influence probabilities puv and p0uv’s on ever
edges euv , and a set S ✓ V of seed nodes, find a boost set
B ✓ V with k nodes, such that the boost of influence spread
of B is maximized. That is, determine B⇤ ✓ V such that

B⇤ = arg maxB✓V,|B|k �S(B). (1)

Remarks. By definition, one can see that the k-boosting
problem is very different from the classical influence maxi-
mization problem. In addition, we observe that boosting nodes
that significantly increase the influence spread when used as
additional seeds could be extremely inefficient. For example,
consider the example in Figure 1. If we are allowed to select
one more seed, node v1 is the optimal choice. However, if we
can boost a node, boosting v0 is much better than boosting v1.
Section VI provides more experimental results.

B. Challenges of the Boosting Problem

In this part, we analyze several key properties of the k-
boosting problem and show the challenges we face. Theorem 1
indicates the hardness of the k-boosting problem.

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
The computation of �S(B) given S and B is #P-hard.

Proof outline: The NP-hardness is proved by a reduction from
the NP-complete Set Cover problem [24]. The #P-hardness of
the computation is proved by a reduction from the #P-complete
counting problem of s-t connectedness in directed graphs [25].
The full analysis can be found in our technical report [26].

Non-submodularity of the boosted influence. Because of the
above hardness results, we explore approximation algorithms
to tackle the k-boosting problem. In most influence maximiza-
tion problems, the expected influence of the seed set S (i.e.,
the objective function) is a monotone and submodular function
of S.1 Thus, a natural greedy algorithm returns a solution with

1 A set function f is monotone if f(S)  f(T ) for all S ✓ T ; it is
submodular if f(S [ {v})� f(S) � f(T [ {v})� f(T ) for all S ✓ T and
v 62 T , and it is supermodular if �f is submodular.

an approximation guarantee [1, 6–8, 15, 27]. However, the ob-
jective function �S(B) in our problem is neither submodular
nor supermodular on the set B of boosted nodes. On one hand,
when we boost several nodes on different parallel paths from
seed nodes, their overall boosting effect exhibits a submodular
behavior. On the other hand, when we boost several nodes on
a path starting from a seed node, their boosting effects can
be cumulated along the path, generating a larger overall effect
than the sum of their individual boosting effect. This is in fact
a supermodular behavior. To illustrate, consider the graph in
Figure 1, we have �S({v0, v1})��S({v0}) = 0.04, which is
larger than �S({v1})��S(;) = 0.02. In general, the boosted
influence has a complicated interaction between supermodular
and submodular behaviors when the boost set grows, and is
neither supermodular nor submodular. The non-submodularity
of �S(·) indicates that the boosting set returned by the greedy
algorithm may not have the (1�1/e)-approximation guarantee.
Therefore, besides the NP-hardness of the problem and the #P-
hardness of computing �S(·), the non-submodularity of the
objective function poses an additional challenge.

IV. BOOSTING ON GENERAL GRAPHS

In this section, we present three building blocks for solving
the k-boosting problem: (1) a state-of-the-art influence max-
imization framework, (2) the Potentially Reverse Reachable
Graph for estimating the boost of influence spread, and (3)
the Sandwich Approximation strategy [22] for maximizing non-
submodular functions. Our solutions to the k-boosting problem
integrate the three building blocks. We will present the detailed
algorithm design in the next section.

A. State-of-the-art influence maximization techniques

In influence maximization problems, we want to select
k seeds so that the expected influence spread is maximized.
One state-of-the-art method is the Influence Maximization via
Martingale (IMM) method [8] based on the idea of Reverse-
Reachable Sets (RR-sets) [6]. We use the IMM method in this
work, but it is important to note that the IMM method could be
replaced by other similar influence maximization frameworks
based on RR-sets (e.g., TIM/TIM+ [7] or SSA/D-SSA [15]).

RR-sets. An RR-set for a node r is a random set R of nodes,
such that for any seed set S ✓ V , the probability that R\S 6= ;
equals the probability that r can be activated by S in a random
diffusion process. Node r may also be selected uniformly at
random from V , and the RR-set will be generated accordingly
with the random node r. One key property of RR-sets is that
the expected influence of S equals to n·E[I(R \ S 6= ;)] for all
S ✓ V , where I(·) is the indicator function and the expectation
is taken over the randomness of R.

General IMM algorithm. The IMM algorithm has two phases.
The sampling phase keeps generating random RR-sets until
a stopping criteria is met, indicating that the estimation of
the influence spread is “accurate enough”. The node selection
phase greedily selects k seed nodes based on the generated
RR-sets. Under a diffusion model where generating a random
RR-set takes time O(EPT ), the IMM algorithm returns a (1�
1/e�✏)-approximate solution with at least 1�n�` probability,
and runs in O(EPT

OPT · (k + `)(n + m) log n/✏2) expected time,
where OPT is the optimal expected influence.
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Figure 1: Influence Boosting Model

Problem Definition
• Problem: Given a graph G = (V,E) with influence probabilities on edges, and a set

S ⊆V of seeds, find a boost set B ⊆V with k nodes, such that the boost of influence
spread of B denoted by ∆S(B) is maximized.

• Hardness: NP-hard. The computation of ∆S(B) given S and B is #P-hard.
• Submodularity: ∆S(B) is neither submodular nor supermodular.

Boosting on General Graphs
Building blocks

• Potentially Reverse Reachable Graphs (PRR-graphs)

– Usage: Estimate boost of influence and its lower bound

• State-of-the-art influence maximization techniques

– Usage: Sampling PRR-graphs

• Sandwich approximation strategy

– Approx. ratio: ∆S(Bsa)≥ µ(B∗)
∆S(B∗) · (1−1/e− ε) ·OPT
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estimation of the influence spread is “accurate enough”. The node selection phase
greedily selects k seed nodes based on the generated RR-sets. Under a diffusion
model where generating a random RR-set takes time O(EPT ), the IMM algorithm
returns a (1 � 1/e � ✏)-approximate solution with at least 1 � n�` probability, and
runs in O(EPT

OPT · (k + `)(n+m) log n/✏2) expected time, where OPT is the optimal
expected influence.

4.2 Potentially Reverse Reachable Graphs

We now describe how we estimate the boost of influence, which is our objective
function in the k-boosting problem. The estimation is based on the concept of the
Potentially Reverse Reachable Graph (PRR-graph), which is defined as follows.

Definition 3 (Potentially Reverse Reachable Graph) Let r be a node in G. A Po-
tentially Reverse Reachable Graph (PRR-graph) R for a node r is a random graph
generated as follows. We first sample a deterministic copy g of G. In the determin-
istic graph g, each edge euv in graph G is “live” in g with probability puv , “live-
upon-boost” with probability p0uv �puv , and “blocked” with probability 1�p0uv . The
PRR-graph R is the minimum subgraph of g containing all paths from seed nodes to
r through non-blocked edges in g. We refer to r as the “root node”. When r is also
selected from V uniformly at random, we simply refer to the generated PRR-graph
as a random PRR-graph (for a random root).
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Fig. 2: Example of a Potentially Reverse Reachable Graph.

Figure 2 shows an example of a PRR-graph R. The directed graph G contains 12
nodes and 16 edges. Node r is the root node. Shaded nodes are seed nodes. Solid,
dashed and dotted arrows with crosses represent live, live-upon-boost and blocked
edges, respectively. The PRR-graph for r is the subgraph in the dashed box. It con-
tains 9 nodes and 13 edges. Nodes and edges outside the dashed box do not belong
to the PRR-graph. It is easy to check that nodes and edges outside the dashed box
are not on any paths from seed nodes to r that only contain non-blocked edges. By

Figure 2: Example of a PRR-graph and related concepts

Boosting: Algorithm Design
Steps of PRR-Boost/PRR-Boost-LB

1. Sampling PRR-graphs for estimating the boost

2. Node selection according to estimated lower bound

– PRR-Boost-LB returns here

3. Node selection according to estimated boost

4. Return the “better” solution

– according the to estimated boost of influence

is submodular on B because f�
R (B) is a submodular function

of B for any PRR-graph R.

Our experiments show that µ is close to �S , especially for
small values of k, say less than a thousand. Define

µ̂R(B) =
n

|R| ·
X

R2R
f�

R (B), 8B ✓ V.

Because f�
R (B) is submodular on B for any PRR-graph R,

µ̂R(B) is submodular on B. Moreover, by Chernoff bound,
µ̂R(B) is close to µ(B) when |R| is sufficiently large.

Remarks on function µ(B). Function µ(B) does correspond
to some physical diffusion model. Roughly speaking, µ(B) is
the influence spread in a diffusion model with the boost set
B, and the constraint that at most one edge on the influence
path from a seed node to an activated node can be boosted.
Due to space limit, we omit the precise description of the
corresponding diffusion model here and include it in [26].
Compared with the convoluted diffusion model corresponding
to µ(B), the PRR-graph description of µ(B) is more direct
and is easier to analyze. Our insight is that by fixing the
randomness in the original diffusion model, it may be easier
to derive submodular lower-bound or upper-bound functions.

V. ALGORITHM DESIGN

In this section, we first present how we generate random
PRR-graphs. Then we obtain overall algorithms for the k-
boosting problem by integrating the general IMM algorithm
with PRR-graphs and the Sandwich Approximation strategy.

A. Generating PRR-graphs

We classify PRR-graphs into three categories. Let R be a
PRR-graph with root node r. (1) Activated: If there is a live
path from a seed node to r; (2) Hopeless: If there is no seeds
in R, or there is no path from seeds to r with at most k non-
live edges; (3) “Boostable”: not the above two categories. If
R is not boostable (i.e. case (1) or (2)), we have fR(B) =
f�

R (B) = 0 for all B ✓ V . Therefore, for “non-boostable”
PRR-graphs, we only count their occurrences and we terminate
the generation of them once we know they are not boostable.
Algorithm 1 depicts how we generate a random PRR-graph.
The generation contains two phases. The first phase (Lines 1-
19) generates a PRR-graph R. If R is boostable, the second
phase compresses R to reduce its size. Figure 3 shows the
results of two phases, given that the status sampled for every
edge is same as that in Figure 2.

Phase I: Generating a PRR-graph. Let r be a random node.
In this phase, a backward Breadth-First Search (BFS) from
r makes sure that all non-blocked paths from seed nodes to
r with at most k live-upon-boost edges are included in R.
The status of each edge (i.e., live, live-upon-boost, blocked) is
sampled when we first process it. The detailed backward BFS
is as follows. Define the distance of a path from u to v as
the number of live-upon-boost edges on it. Then, the shortest
distance from v to r is the minimum number of nodes we
have to boost so that at least a path from v to r becomes live.
For example, in Figure 3a, the shortest distance from v7 to r
is one. During the generation of R, we use dr[·] to maintain
the shortest distances from nodes to the root node r. Initially,
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Fig. 3: Generation of a PRR-Graph. (Solid and dashed ar-
rows represent live and live-upon-boost edges respectively.)

Algorithm 1: Generating a random PRR-graph (G, S, k)

1 Select a random node r as the root node
2 if r 2 S then return R is activated
3 Create a graph R with a singleton node r
4 Create a double-ended queue Q with (r, 0)
5 Initialize dr[r] 0 and dr[v] +1, 8v 6= r
6 while Q is not empty do
7 (u, dur) Q.dequeue front()
8 if dur > dr[u] then continue // we’ve processed u
9 for each non-blocked incoming edge evu of u do

10 dvr  I(evu is live-upon-boost) + dur

11 if dvr > k then continue // pruning
12 Add evu to R
13 if dvr < dr[v] then
14 dr[v] dvr

15 if v 2 S then
16 if dr[v] = 0 then return R is activated

17 else if dvr =dur then Q.enqueue front((v, dvr))
18 else Q.enqueue back((v, dvr))

19 if there is no seed in R then return R is hopeless
20 Compress the boostable R to reduce its size
21 return a compressed boostable R

we have dr[r] = 0 and we enqueue (r, 0) into a double-ended
queue Q. We repeatedly dequeue and process a node-distance
pair (u, dur) from the head of Q, until the queue is empty. Note
that the distance dur in a pair (u, dur) is the shortest known
distance from u to r when the pair was enqueued. Thus we
may find dur > dr[u] in Line 8. Pairs (u, dur) in Q are in the
ascending order of the distance dur and there are at most two
different values of distance in Q. Therefore, we process nodes
in the ascending order of their shortest distances to r. When we
process a node u, for each of its non-blocked incoming edge
evu, we let dvr be the shortest distance from v to r via u. If
dvr > k, all paths from v to r via u are impossible to become
live upon boosting at most k nodes, therefore we ignore evu

safely in Line 11. This is in fact a “pruning” strategy, because
it may reduce unnecessary costs in the generation step. The
pruning strategy is effective for small values of k. For large
values of k, only a small number of paths need to be pruned
due to the small-world property of real social networks. If
dvr  k, we insert evu into R, update dr[v] and enqueue
(v, dvr) if necessary. During the generation, if we visit a seed
node s and its shortest distance to r is zero, we know R is

Figure 3: Example of a compressed PRR-graph

With a prob. of at least 1−n−`,
PRR-Boost/PRR-Boost-LB

• returns a (1− 1/e− ε) · µ(B∗)
∆S(B∗)-

approximate solution;
• has expected running time

O
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EPT
OPTµ

· k(k+ `)(n+m) logn/ε2
)
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(a) Digg (n = 28K, m = 200K, p̄ = 0.239)
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(b) Flixster (n = 96K, m = 485K, p̄ = 0.228)
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(c) Twitter (n = 323K, m = 2.14M, p̄ = 0.608)
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(d) Flickr (n = 1.45M, m = 2.15M, p̄ = 0.013)

Figure 4: Boost of the influence versus k (50 influential seeds).
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Figure 5: Sandwich Approximation: µ(B)
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Figure 6: Running time (50 influential seeds).
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Figure 7: Budget allocation between seeding and boosting.


