BOOSTING INFORMATION SPREAD: AN ALGORITHMIC APPROACH

Yishi Lin *, Wei Chen [†], John C.S. Lui *

* The Chinese University of Hong Kong, [†] Microsoft Research

• **Problem**: Given a graph G = (V, E) with influence probabilities on edges, and a set $S \subseteq V$ of seeds, find a boost set $B \subseteq V$ with k nodes, such that the boost of influence

B	$\sigma_S(B)$	$\mid \Delta_S(B) \mid$
Ø	1.22	0.00
$\{v_0\}$	1.44	0.22
$\{v_1\}$	1.24	0.02
$\{v_0,v_1\}$	1.48	0.26

Figure 1: Influence Boosting Model

spread of B denoted by $\Delta_S(B)$ is maximized.

- **Hardness**: NP-hard. The computation of $\Delta_S(B)$ given S and B is #P-hard.
- **Submodularity**: $\Delta_S(B)$ is neither submodular nor supermodular.

Boosting on General Graphs

Building blocks

- Potentially Reverse Reachable Graphs (PRR-graphs)
 - Usage: Estimate boost of influence and its lower bound
- State-of-the-art influence maximization techniques
 - Usage: Sampling PRR-graphs
- Sandwich approximation strategy

- Approx. ratio:
$$\Delta_S(B_{sa}) \ge \frac{\mu(B^*)}{\Delta_S(B^*)} \cdot (1 - 1/e - \varepsilon) \cdot OPT$$

Boosting: Algorithm Design

Steps of PRR-Boost/PRR-Boost-LB

- 1. Sampling PRR-graphs for estimating the boost
- 2. Node selection according to estimated lower bound
 - PRR-Boost-LB returns here
- 3. Node selection according to estimated boost
- 4. Return the "better" solution
 - according the to estimated boost of influence

– Estimating the boost

- $f_R(\emptyset) = 0$
- $f_R(\{v_1\}) = 1$ $- f_R(\{v_3\}) = 1$ $- f_R(\{v_2, v_5\}) = 1$
- Critical nodes - $C_R = \{v_1, v_3\}$
- Estimating the lower bound $- \mu_R(B) = \mathbb{I}(B \cap C_R \neq \emptyset)$

Figure 2: Example of a PRR-graph and related concepts

Figure 3: Example of a compressed PRR-graph

With a prob. of at least $1-n^{-\ell}$, PRR-Boost/PRR-Boost-LB

- returns a $(1 1/e \varepsilon) \cdot \frac{\mu(B^*)}{\Lambda_{s}(B^*)}$ approximate solution;
- has expected running time $O\left(\frac{EPT}{OPT_{''}} \cdot k(k+\ell)(n+m)\log n/\varepsilon^2\right).$

Evaluation of PRR-Boost and PRR-Boost-LB

Budget Allocation

