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Recent years have witnessed a growing interest in understanding the fundamental principles of how epi-
demic, ideas or behaviour spread over large networks (e.g. the Internet or online social networks). The
conventional approach is to use the susceptible-infected-susceptible (SIS) model or its derivatives. We
like to note that these models are often too restrictive and may not be applicable in many realistic sit-
uations. In this paper, we propose a ‘generalized SIS model’ by allowing the existence of intermediate
states between susceptible and infected states. To analyse the diffusion process of the generalized SIS
model on large graphs, we use the ‘mean-field analysis technique’ to determine which initial condition
leads to or prevents the outbreak of information or virus. For any general connected graphs, we show
that the condition which can prevent the spread of contagions depends on two de-coupled effects: the
network topology and the parametric values of the generalized SIS model. Experimental results based on
both synthetic and real-world datasets show that our methodology can accurately predict the behaviour of
the phase-transition process for any general graphs. We also extend our generalized SIS model to analyse
the dynamics and behaviour of two competing sources. This is useful if one wants to model competing
products in a large network or competition between virus and antidote in a large communication network.
We present the analytical derivation and show via experiment how different factors such as initial con-
dition, transmission rates, recovery rates or the number of states can affect the phase transition process
and the final equilibrium. Our models and methodology can serve as an essential tool in analysing and
understanding the information diffusion process in large networks.

Keywords: models of complex networks; applications of complex network analysis; complex networks
and epidemics; generalized SIS model; tipping point; competing sources.

1. Introduction

In the area of complex networks or network science, many researchers have studied the problem of
contagion [1–3]: How viruses, ideas or behaviours can be spread in large networks. Understanding the
dynamical process of contagion is of importance if one wants to prevent and control the spread of
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diseases, or to maximize the influence of a product in online social networks [4]. One popular contagion
model is the susceptible-infected-susceptible (SIS) model. Under this model, each node in a network
can be in one of these two states: ‘susceptible’ (S) or ‘infected’ (I). When a node is in state S, it is
subjected to be influenced by its neighbouring nodes in the I state, while only nodes in the I state can
influence their neighbouring nodes. When a node is in the ‘infected’ state, it becomes recovered and
returns back to the ‘susceptible" state at some rate. Hence, using the SIS model, one can model the
spread of contagions such as flu or ideas in a large network.

We like to note that the SIS model is often too restrictive. For example, consider the case where
a diffusion model is used to describe a product adoption [5]. Some time after the product release,
some people may have purchased the product while some may not. The recent results of consumer pur-
chase decision process theory [6] reveal that, in general, there are five stages until a consumer makes a
purchase and influences others. These states include ‘product recognition’, ‘information search’, ‘alter-
native evaluation’, ‘purchase decision’ and ‘post-purchase behaviour’. This implies that using the tradi-
tional SIS model of having a single state (e.g., susceptible state) to model the purchase decision process
is insufficient, and one needs to further expand the susceptible state into more states according to the
degree of interest. Moreover, in some scenarios, there are more than one contagion, ideas or behaviours
spreading in the network. We also need to consider the competition among multiple sources so that we
can study how the interaction may affect the final state of the network.
Contributions: From these aspects, we make several contributions in this paper. They are as follows:

• Our first contribution is that we propose a generalization of the SIS model by allowing the number
of states k to adoption (or infection) be > 1. That is, the states can be from state 0 to state k − 1,
where the state k − 1 is the infected (active) state: An infected node can influence its neighbour-
ing nodes, while nodes in state 0 to k − 1 can be promoted to a higher state if they are exposed
to its infected neighbour. We use the multidimensional mean-field method to analyse the influence
spreading dynamics in complete and general graphs, and determine the condition of phase transi-
tion. We show that the condition that prevents the spread of contagions depends on two de-coupled
effects: the network topology and the parametric values of the generalized SIS model. For undi-
rected graphs, our results show that this condition depends on the largest eigenvalue of the adja-
cency matrix, the infection rates, the recovery rate and the number of states k in the generalized SIS
model. For directed graphs, it also depends on the maximum in-degree among all nodes besides the
above factors.

• Our second contribution is to model and analyse the dynamics and behaviour of two competing
sources. We first use our generalized SIS model in two competing sources, with one being dominant
and the other being recessive, and these two sources compete with each other in the network. We
formulate the dynamic process and show how different factors, such as different initial conditions
and transmission rates may affect the phase transition and the final equilibrium.

• Last but not least, our methodology can predict the behaviour of the diffusion accurately, and we
use several applications to illustrate how one can design simple and effective vaccination or adver-
tisement strategy in a large network.

The rest of the paper is organized as follows: We first propose and analyse the generalized SIS model
under various network settings in Section 2. Experimental results on the effectiveness and accuracy of
our analytical framework in Section 3. Then we present the generalized SIS model with two competing
sources in Section 4, and show the corresponding experimental results in Section 5. Related work is in
given Section 6 and finally we conclude our work in Section 7.
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Fig. 1. The generalized SIS model with k !2 states.

2. Generalized SIS model and analysis

Let us first formally state our multi-state SIS model. We first model the network under study as a
fully connected undirected graph G = (V , E) (later, we will generalize our results to general graphs).
Any node v ∈ V can be in one of k ! 2 states: {0, 1, . . . , k − 1}. Only nodes in state k − 1 (which we
call the infected or active state) can increase the state value of its neighbours, say node s, from state
j ∈ {0, 1, . . . , k − 2} to state j + 1 with an infection rate of βj+1 > 0. Each node can recover with a
recovery rate of γ > 0 and its state will return to state 0. Figure 1 depicts our generalized SIS model
with k ! 2 states.

Let us first briefly review some work on the analysis of the classical SIS (or k = 2) model.
Under the classical SIS model, state 0 corresponds to susceptible (S), while state 1 corresponds to
infected (I). The infection rate is β and the recovery rate is γ . Let x0(t) and x1(t) be the fraction of
nodes in state S and state I at time t ! 0, respectively. We define (x0, x1) as an equilibrium for the
model, i.e. limt→∞ xi(t), i = 1, 2. If G is a fully connected graph, we have dx1/dt = βx0x1 − γ x1 and
x0(t) + x1(t) = 1. For this model, we have two possible equilibria: one is (x0, x1) = (1, 0) and the other is
(x0, x1) = (γ /β, 1 − γ /β).

Let us consider an arbitrary graph G. Denote A as the adjacency matrix of G, i.e. Aij = 1 if node i
and j are neighbours to each other, and 0 otherwise. Let x(i)

0 (t) and x(i)
1 (t) be the probability of node i

in state S and state I at time t, where i ∈ V , respectively. Denote (x(i)
0 , x(i)

1 )i∈V as an equilibrium for this
model. We have dx(i)

1 /dt = βx(i)
0
∑

j Ajix
(j)
1 − γ x(i)

1 = 0.
It is important for us to note that this is a ‘mean-field approximation’. The right-hand side of the

above equation contains three average quantities (x(i)
0 (t), x(i)

1 (t) and x(j)
1 (t)), and in multiplying these

quantities, we implicitly assume that the product of their average is equal to the average of their product.
For a large graph G, this form of mean-field approximation is very accurate. But for small networks,
this may not hold since probabilities are not independent. We say that the infection process will die out
when eventually all nodes in G are in state S, or limt→∞ x(i)

0 (t) = 1, ∀i ∈ V . One can formally show [7]
that the condition for infection to die out over time is β/γ < 1/λ1, and λ1 is the largest eigenvalue of
the adjacency matrix A.

2.1 Ternary model for generalized SIS

For the ease of presentation, we first consider a generalized SIS model with k = 3 states. State 0 is
susceptible and state 1 means that a node is exposed but not infected yet. For each state s ∈ {0, 1, 2},
let xs(t) be the fraction of nodes in state s at time t and we let (x0, x1, x2) be an equilibrium for the
model. It is easy to see that x0(t) + x1(t) + x2(t) = 1 for all t. Using the mean-field analysis, we have
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the following system of differential equations which describes the system dynamics:

dx2

dt
= β2x1x2 − γ x2, (2.1)

dx1

dt
= −β2x1x2 + β1x0x2 − γ x1. (2.2)

By setting dx2/dt = 0, we have two cases to consider: x2 = 0 or x2 |= 0 and x1 = γ /β2.
The non-trivial equilibrium corresponds to the second case. By setting dx1/dt = 0, we have
−β2x1x2 + β1x0x2 − γ x1 = 0, hence

x0 =
(

β2x2 + γ

β1x2

)
x1.

For this non-trivial solution, we have x2 |= 0, x1 = γ /β2 and x0 = ((β2x2 + γ )/β1x2)(γ /β2). Because∑2
i=0 xi = 1, we have the following relationship: 1 = ((β2x2 + γ )/β1x2)(γ /β2) + γ /β2 + x2, or

β1β2x2
2 + [γ (β1 + β2) − β1β2]x2 + γ 2 = 0. (2.3)

Let us now give the necessary condition for the dynamic system (2.1) and (2.2) to reach a non-trivial
equilibrium.

Theorem 2.1 The necessary condition for the dynamic system as described in (2.1) and (2.2) to reach
a non-trivial equilibrium is

γ " β1β2

(
√

β1 +
√

β2)2
. (2.4)

Proof. The discriminant of the quadratic Equation (2.3) is D = [γ (β1 + β2) − β1β2]2 − 4γ 2β1β2. Let
us derive the conditions for D ! 0. We could write D = 0 as a quadratic equation of γ . Then we can
express D = 0 as

D = γ 2(β1 + β2)
2 − 2γ (β1 + β2)β1β2 − 4γ 2β1β1

= γ 2(β1 − β2)
2 − 2γ (β1 + β2)β1β2 + (β1β2)

2 = 0.

We first consider the case when β1 |= β2. The discriminant of the above quadratic equation of γ ,
denoted by D′

γ , is

D′
γ =[2(β1 + β2)β1β2]2 − 4(β1 − β2)

2(β1β2)
2

=4[(β1 + β2)
2 − (β1 − β2)

2](β1β2)
2

=16(β1β2)
3.
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Fig. 2. The phase transition region of the ternary model where γ = 1.

We have D′
γ > 0 since we assume that the infection rates are positive. Thus, the equation D = 0 has two

real solutions, and we denote them by γ1 and γ2.

γ1,2 = 2(β1 + β2)β1β2 ± 4β1β2
√

β1β2

2(β1 − β2)2

= β1β2(
√

β1 ±
√

β2)
2

(β1 − β2)2

= β1β2

(
√

β1 ±
√

β2)2
.

For β1 |=β2, D ! 0 holds if γ " β1β2/(
√

β1 +
√

β2)
2 or γ ! β1β2/(

√
β1 −

√
β2)

2. Note that
x1 = γ /β2 " 1 implies β2 ! γ . However, γ ! β1β2/(

√
β1 −

√
β2)

2 ! β2 is a contradiction. Hence, for
β1 |= β2, the dynamic system has a non-trivial equilibrium which implies γ " β1β2/(

√
β1 +

√
β2)

2.
The other case we have to consider is when β1 = β2. D ! 0 holds if and only if

γ " β1β2

2(β1 + β2)
= β1β2

(
√

β1 +
√

β2)2
.

The last equality holds because β1 = β2. Hence we can conclude that the dynamic system has a non-
trivial equilibrium which implies

γ " β1β2

(
√

β1 +
√

β2)2
.

#

Using this result, we can determine the region for the phase transition, or the necessary conditions, in
which the majority of nodes are in state 2 at equilibrium. Figure 2 depicts the phase transition region. In
this region, the information or virus has a chance to outbreak if (β1, β2) satisfies β1β2/(

√
β1 +

√
β2)

2 !
γ . In Section 2.2, we extend this condition to a general case of k ! 2.
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Suppose that there exists at least one real solution for Equation (2.3) and (x1 = γ /β, x2) is a non-
trivial solution for the dynamic system. The solution is feasible if it satisfies 0 " x1, x2 " 1 and 0 "
x1 + x2 " 1. For any feasible non-trivial solution, we are interested in whether the dynamic system will
reach this equilibrium or not. Let us now present the stability condition of the ternary model.

Theorem 2.2 For a feasible and non-trivial solution (x1 = γ /β2, x2) of the dynamic system as described
in (2.1) and (2.2), it has a non-trivial equilibrium if x2 > 1

2 (1 − γ /β1 − γ /β2).

Proof. Define f1(x1, x2) = dx1/dt = −β2x1x2 + β1(1 − x1 − x2)x2 − γ x1 and f2(x1, x2) = dx2/dt =
β2x1x2 − γ x2. We also define J as the Jacobian matrix where J = (dfi/dxj)i,j=1,2. A fixed point (or an
equilibrium) of the system of differential equation which is defined by Equations (2.1) and (2.2) is stable
if the trace (Tr) of J is negative and the determinant (Det) of J is positive. We can express the differential
of fi as follows:

df1
dx1

= −β2x2 − β1x2 − γ ,
df1
dx2

= −β2x1 + β1 − β1x1 − 2β1x2,

df2
dx1

= β2x2,
df2
dx2

= β2x1 − γ .

Since x1 = γ /β2, the Jacobian matrix J is

J =

⎡

⎣−β2x2 − β1x2 − γ −γ + β1 − β1γ

β2
− 2β1x2

β2x2 0

⎤

⎦ .

For any feasible x2, we have Tr < 0. Also, if x2 > 1
2 (1 − γ /β1 − γ /β2), we have Det = −β2x2(−γ +

β1 − β1γ /β2 − 2β1x2) > 0, which completes the proof. #

Hence, a non-trivial equilibrium (x1, x2) is stable if x2 > 1
2 (1 − γ /β1 − γ /β2), or a saddle point

elsewhere. Note that (x1, x2) = (0, 0) is a stable equilibrium because the eigenvalues of J are negative.

Example Consider the following. If β1 = β2 = 20 and γ = 1, then we have x1 = 0.05 from x1 = γ /β2.
From Equation (2.3), we have 400x2 = (20x2 + 1)2. Solving this, we obtain x2 = 0.003 or 0.897. As
1
2 (1 − γ /β1 − γ /β2) = 0.45 < 0.897, we can conclude that (x1, x2) = (0.05, 0.897) is a stable non-
trivial equilibrium.

Application 1 (Vaccination strategy) We now illustrate how one can apply the results of this ternary
SIS model. Assume that there is a large-scale computer virus spreading in a network; the detection rate
of an anti-virus software γ needs to be high enough so as to prevent its spreading for a given (β1, β2).
This leads to the following vaccination strategy: the value of γ needs to guarantee by the following
conditions:

• Equations (2.1) and (2.2) have no solution, or

• Equation (2.3) has no feasible non-trivial solution of x2, i.e. x2 /∈ (0, 1], or

• Equation (2.3) has feasible solutions of x2 but none of them are stable, i.e. x2 " 1
2 (1 − γ /β1 −

γ /β2) and (x1, x2) is not a saddle point elsewhere.
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Using the result of Theorem 2.1, as long as γ > β1β2/(
√

β1 +
√

β2)
2, Equation (2.3) would have no

non-trivial solution and thus the first condition is satisfied. Note that, in some situations, a very high
recovery rate of γ may not be possible. For example, we may not be able to implement an anti-virus
software such that γ > β1β2/(

√
β1 +

√
β2)

2 with a limited budget or in limited time. In this case, we
are still able to control the spreading of the virus if we can find a smaller and practical γ such that the
second or the third condition is satisfied.

2.2 Generalized multi-state SIS model for complete graphs

Let us first analyse the general SIS model for k ! 2 and that the network is a complete graph. Extension
for the general network will be presented in later sections. For each s ∈ {0, 1, . . . , k − 1}, let xs(t) be
the fraction of nodes in state s at time t. Let (x0, x1, . . . , xk−1) be an equilibrium for the model. We can
express the following system of differential equations:

dxk−1

dt
= βk−1xk−2xk−1 − γ xk−1, (2.5)

dxs

dt
= −βs+1xsxk−1 + βsxs−1xk−1 − γ xs ∀s ∈ {1, . . . , k − 2}. (2.6)

By equating dxk−1/dt = 0, we have (xk−1 = 0) or (xk−1 |= 0 and xk−2 = γ /βk−1). We set dxs/dt = 0 for
any 1 " s " k − 2, or −βs+1xk−1xs + βsxk−1xs−1 − γ xs = 0. This implies that we have the following
relationship:

xs−1 =
(

βs+1xk−1 + γ

βsxk−1

)
xs =

⎛

⎝
k−2∏

j=s

βj+1xk−1 + γ

βjxk−1

⎞

⎠ xk−2.

If xk−1 |= 0, the condition
∑k−1

i=0 xi = 1 is equivalent to

1 = xk−1 + γ

βk−1
+

k−2∑

s=1

⎛

⎝
k−2∏

j=s

βj+1xk−1 + γ

βjxk−1

⎞

⎠ γ

βk−1
,

which is a (k − 1)-dimension equation of xk−1. By multiplying β1β2 · · ·βk−1xk−2
k−1 on both sides, we

obtain
β1β2 . . . βk−1xk−2

k−1 = (β1xk−1 + γ ) · · · (βk−1xk−1 + γ ). (2.7)

This relationship holds for any k ! 2 (this can be formally shown via mathematical induction on k).
Let us now consider a special case where the infection rates are increasing geometrically with a

growth rate α > 1. In other words, βk−1 = αβk−2 = · · · = αk−2β1. For positive β1, Equation (2.7) is
equivalent to 1/xk−1 = (1 + γ /β1xk−1) · · · (1 + γ /βk−1xk−1). For simplicity, we make a homogeneous
assumption where β = β1. Substituting y with 1/βxk−1, we have βy = (1 + γ y)(1 + (γ /α)y) · · · (1 +
(γ /αk−2)y).

Define g1(y) = βy and g2(y) = (1 + γ y)(1 + (γ /α)y) · · · (1 + (γ /αk−2)y). These two functions of
y are positive, monotone increasing and convex for y > 0. Since g2(y) = 0 has only negative solutions
y = −γ , −γα, . . . , −γαk−2. Thus, g1(y) = g2(y) has at most two solutions. Moreover, for a fixed α,
there is a tipping point βt (or equivalently epidemic threshold). The equation has no solution if β <

βt and has two solutions if β > βt. Let us first present the tipping point analysis for a special case
where α = 1.
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Theorem 2.3 For the case where α = 1 (i.e. the infection rates are homogeneous), β ! βt =
γ ((k − 1)k−1/(k − 2)k−2) is the necessary condition for the dynamic system (2.5) and (2.6) to have
a non-trivial equilibrium. Or equivalently, β < βt is a sufficient condition for the fraction of nodes at the
infected state to eventually converge to zero.

Proof. For the case where α = 1, g1(y) = g2(y) is equivalent to βy = (1 + γ y)k−1. At the tipping point,
i.e. β = βt, g1(y) = g2(y) has a unique solution. Hence, the slopes of g1(y) and g2(y) are the same
when g1(y) = g2(y), since (d/dy)βty = βt and (d/dy)(1 + γ y)k−1 = γ (k − 1)(1 + γ y)k−2 intersect at
the point y = (1/γ )[(βt/γ (k − 1))1/(k−2) − 1]. Substituting y with (1/γ )[(βt/γ (k − 1))1/(k−2) − 1], we
obtain (βt/γ )[(βt/γ (k − 1))1/(k−2) − 1] = [βt/γ (k − 1)](k−1)/(k−2). When βt is positive, we can derive
the expression of βt as

βt

γ

[(
βt

γ (k − 1)

)1/(k−2)

− 1

]
=
(

βt

γ (k − 1)

)(k−1)/(k−2)

,

βt

γ

[
β

1/(k−2)
t

γ 1/(k−2)(k − 1)1/(k−2)
− 1

]
= βt

γ

[
β

1/(k−2)
t

r1/(k−2)(k − 1)(k−1)/(k−2)

]
,

β
1/(k−2)
t

[
1

γ 1/(k−2)(k − 1)1/(k−2)
− 1

γ 1/(k−2)(k − 1)(k−1)/(k−2)

]
= 1,

βt = γ
(k − 1)k−1

(k − 2)k−2
.

Thus, β ! βt guarantees that g1(y) = g2(y) will have at least one solution. Equivalently,
Equation (2.7) will have at least one solution. Therefore, it is a necessary condition for the dynamic
system (2.5) and (2.6) to have a non-trivial equilibrium. #

It is important to node that, for α = 1, β ! βt is not sufficient for the dynamic system (2.5) and (2.6)
to have a non-trivial equilibrium, since the solution xk−1 for Equation (2.7) may not be feasible (e.g.
xk−1 < 0 or xk−1 > 1) and a feasible solution may not be a reachable equilibrium.

Application 2 (Vaccination strategy or product promotion strategy) Let us consider a computer virus
outbreak in a network G. One can devise an effective vaccination strategy using Equations (2.5)
and (2.6). For example, one can provide an anti-virus software with a detection rate of γ . If γ >

β((k − 2)k−2/(k − 1)k−1), then the fraction of nodes in the infected state converges to zero for suf-
ficiently large t. Furthermore, when k increases (i.e. the viruses need more phases to infect and activate
a node), the threshold for γ decreases. Hence, it is easier to control the outbreak when we have a large
k. On the other hand, if we want to promote a product in an online social network, then decreasing k
makes our product easier to influence more customers.

Let us now consider the general case in which the infection rates are not homogeneous. For a given
recovery rate γ and initial fraction of nodes in different states, it is straightforward to see that if the
infection rates increase, the chance for the dynamic system (2.5) and (2.6) to reach a non-trivial equilib-
rium also increases. For example, suppose the infection rates for an epidemic increase, the chance for
the epidemic outbreak also increases. Hence, we have the following corollary.
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Corollary 2.1 Let βmax = maxk−1
i=1 βi, βmax ! γ ((k − 1)k−1/(k − 2)k−2) be the necessary condition for

the dynamic system (2.5) and (2.6) with heterogeneous infection rates to have a non-trivial solution.

2.3 Modelling generalized multi-state SIS model in general graphs

Now consider a general graph G = (V , E) with a generalized SIS model of k ! 2. Again, let A be the
adjacency matrix of G. We make the following assumptions about the underlying graph G. If G is an
undirected graph, we assume it is connected. If G is a directed graph, we assume it is weakly connected.
(Since otherwise, we can analysis each weakly connected components separately.) Moreover, we assume
that the graph contains more than one node, i.e. |V | > 1. For each s ∈ {0, 1, . . . , k − 1}, let ⟨x(i)

s (t)⟩ be
the average probability that node i is in state s at time t. Let ⟨x(i)

s1
(t), x(j)

s2
(t)⟩ be the average probability

that node i is in state s1 and node j is in state s2. For a general graph G, the transmission rate is the rate
at which infection will be transmitted between an infected individual and a susceptible individual. We
denote the transmission rate by β ′

i for each i ∈ {0, 1, . . . , k − 1}. Via the mean-field analysis, we obtain
the following differential equation which describes the system dynamics:

d⟨x(i)
k−1⟩
dt

= β ′
k−1

∑

j

Aji⟨x(i)
k−2, x(j)

k−1⟩ − γ ⟨x(i)
k−1⟩,

d⟨x(i)
s ⟩

dt
= −β ′

s+1

∑

j

Aji⟨x(i)
s , x(j)

k−1⟩ + β ′
s

∑

j

Aji⟨x(i)
s−1, x(j)

k−1⟩ − γ ⟨x(i)
s ⟩ ∀s ∈ {1, . . . , k − 2}.

Again, we have x(i)
0 = 1 −

∑k−1
s=1 x(i)

s for each node i.
Based on the independence assumption, we now provide an approximation to the above equation:

⟨x(i)
s1

(t), x(j)
s2

(t)⟩ = ⟨x(i)
s1

(t)⟩⟨x(j)
s2

(t)⟩. For simplicity of presentation, we omit the angle brackets. Then, for
each node i ∈ V , the approximation equations are

dx(i)
k−1

dt
= β ′

k−1x(i)
k−2

∑

j

Ajix
(j)
k−1 − γ x(i)

k−1, (2.8)

dx(i)
s

dt
= (β ′

sx
(i)
s−1 − β ′

s+1x(i)
s )
∑

j

Ajix
(j)
k−1 − γ x(i)

s ∀s ∈ {1, . . . , k − 2}. (2.9)

Note that the independence assumption we made here has been widely used in modelling and ana-
lyzing the epidemic threshold in general networks [3,7,8]. Moreover, in Section 3, we will illustrate via
experiments that the numerical results given by solving the approximation equations agree very well
with the simulation results.

For any given graph G and initial probability that node i is in state s, i.e. x(i)
s (0), we can use the

above Equations (2.8) and (2.9) to numerically calculate the probability of each node in each state as a
function of time.

2.4 Analysing the generalized SIS model for general undirected graphs

For general graphs, we are interested in finding the condition for the dynamic system (2.8) and
(2.9) to reach a non-trivial equilibrium, i.e. limt→∞ x(i)

k−1(t) > 1 for some i ∈ V . For simplicity,
we let x(i)

s = limt→∞ x(i)
s (t) to denote the probability of node i being in state s at equilibrium.
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We first focus on a special case of our model where the infection rates are homogeneous, i.e.
β ′

1 = β ′
2 = · · · = β ′

k−1.
Prakash et al. [3] proved that for a series of virus propagation models operating on an arbitrary

undirected graph with an adjacency matrix A and the largest eigenvalue λ1, the virus will eventually be
wiped out if s < 1 where s (the effective strength) is

s = λ1 · CVPM

and CVPM is an explicit constant dependent on the virus propagation model. Motivated by their
work, we define the effective strength of our generalized SIS model for undirected graphs
as follows.

Definition 2.1 The effective strength of our generalized SIS model for undirected
graphs is

s = λ1
β ′

γ

(k − 2)k−2

(k − 1)k−1
. (2.10)

The following theorem gives the necessary condition for the existence of non-trivial equilibrium for
the dynamic system (2.8) and (2.9).

Theorem 2.4 For the generalized SIS model with homogeneous infection rates operating on an undi-
rected connected graph with adjacency matrix A, the necessary condition for the dynamic system (2.8)
and (2.9) to reach a non-trivial equilibrium is

s = λ1
β ′

γ

(k − 2)k−2

(k − 1)k−1
! 1, (2.11)

where λ1 is the largest eigenvalue of A.

Note that the generalized SIS model does not satisfy the general initial assumptions of the cascade
model in [3] since the transitions between susceptible states depend on neighbours. Hence, the proof
in [3] cannot be applied directly to prove Theorem 2.4. Before we present the proof of Theorem 2.4, let
us first present some needed lemmas for the non-trivial equilibrium.

Lemma 2.1 At equilibrium, we have

β ′x(i)
k−2

∑

j

Ajix
(j)
k−1 = γ x(i)

k−1, (2.12)

β ′(x(i)
s−1 − x(i)

s )
∑

j

Ajix
(j)
k−1 = γ x(i)

s ∀s ∈ {1, . . . , k − 2}. (2.13)

Proof. The proof of this lemma can be shown by setting dx(i)
k−1/dt = 0 and dx(i)

s /dt = 0
∀s ∈ {1, . . . , k − 2}. #

Lemma 2.2 At the non-trivial equilibrium, we have x(i)
k−1 > 0 for all nodes i.
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Proof. This can be proved by contradiction. Suppose that there exists a non-empty set of nodes I ⊂ V
such that x(i)

k−1 = 0 for all i ∈ I. For all nodes in J = V − I, x(j)
k−1 > 0. Based on the assumption that the

graph is connected, there must exist a node i ∈ I and a node j ∈ J such that Aji > 0.
Let t be the largest integer such that x(i)

t > 0. Since x(i)
k−1 = 0, t " k − 2 holds. According to Equation

(2.13), we have

β ′(x(i)
t − x(i)

t+1)
∑

j

Ajix
(j)
k−1 = γ x(i)

t+1. (2.14)

However, we have γ x(i)
t+1 = 0 and β ′(x(i)

t − x(i)
t+1)

∑
j Ajix

(j)
k−1 = β ′x(i)

t
∑

j Ajix
(j)
k−1 > 0, which contradicts

with Equation (2.14). The inequality holds since all nodes have positive degree in a connected undi-
rected graph with more than one node. #

Lemma 2.3 At the non-trivial equilibrium, for all i, we have

(
∑

j Ajix
(j)
k−1)

k−1

x(i)
k−1

=

⎛

⎝
∑

j

Ajix
(j)
k−1 + γ

β ′

⎞

⎠
k−1

. (2.15)

Proof. Lemma 2.2 implies
∑

j Ajix
(j)
k−1 > 0 holds for all i. Hence, Equation (2.12) can be written as

x(i)
k−2 =

γ x(i)
k−1

β ′∑
j Ajix

(j)
k−1

.

According to Equation (2.13), for 1 " s " k − 2, we have

x(i)
s−1 =

(
γ

β ′∑
j Ajix

(j)
k−1

+ 1

)
x(i)

s =
(

γ

β ′∑
j Ajix

(j)
k−1

+ 1

)k−s−1

x(i)
k−2

=
(

γ

β ′∑
j Ajix

(j)
k−1

+ 1

)k−s−1
γ x(i)

k−1

β ′∑
j Ajix

(j)
k−1

.

Now,
∑k−1

s=0 x(i)
s = 1 is equivalent to

1 = x(i)
k−1 +

γ x(i)
k−1

β ′∑
j Ajix

(j)
k−1

+
k−2∑

s=1

(
γ

β ′∑
j Ajix

(j)
k−1

+ 1

)k−s−1
γ x(i)

k−1

β ′∑
j Ajix

(j)
k−1

,

⇔
∑

j Ajix
(j)
k−1

x(i)
k−1

=
∑

j

Ajix
(j)
k−1 + γ

β ′

k−2∑

s=0

(
γ

β ′∑
j Ajix

(j)
k−1

+ 1

)s

,

⇔ 1

x(i)
k−1

=
(

γ

β ′∑
j Ajix

(j)
k−1

+ 1

)(k−1)

.



442 Y. LIN ET AL.

Multiplying (
∑

j Ajix
(j)
k−1)

k−1 on both sides, we obtain

(
∑

j Ajix
(j)
k−1)

k−1

x(i)
k−1

=

⎛

⎝
∑

j

Ajix
(j)
k−1 + γ

β ′

⎞

⎠
k−1

. (2.16)

#

We are now in the position to prove Theorem 2.4.

Proof of Theorem 2.4. Since AT is a symmetric real matrix, it has an orthonormal basis of eigenvectors,
{v1, v2, . . . , v|V |} with eigenvalues λ1 ! λ2 ! · · · ! λ|V |. Since we assume that the graph is connected and
we know λ1 is no less than the average degree of all nodes, we have λ1 > 0. Suppose that the dynamic
system (2.8–2.9) reaches a non-trivial equilibrium. Let xk−1 = (x(1)

k−1, x(2)
k−1, . . . , x(|V |)

k−1 ). Then it can be
written as a linear combination of eigenvectors of {v1, v2, . . . , v|V |}.

xk−1 =
∑

ℓ

cℓvℓ. (2.17)

Without loss of generality, we can assume that cℓ ! 0, since if can reverse the sign of vℓ and it
is still an eigenvector of AT corresponding to eigenvalue λℓ. Now, we have AT xk−1 =

∑
ℓ cℓλℓvℓ and∑

j Ajix
(j)
k−1 =

∑
ℓ cℓλℓv(i)

ℓ . From Lemma 2.3, it follows that

(
∑

j Aj1x(j)
k−1)

k−1

(
∑

j Aj1x(j)
k−1 + γ /β ′)k−1

= x(1)
k−1. (2.18)

Let v(1)
ℓ be the first element of vℓ. Substituting

∑
ℓ cℓλℓv(1)

ℓ with
∑

j Ajix
(j)
k−1 and substituting

∑
ℓ cℓv(1)

ℓ with x(1)
k−1, Equation (2.18) becomes

(
∑

ℓ cℓλℓv(1)
ℓ )k−1

(
∑

ℓ cℓλℓv(1)
ℓ + γ /β ′)k−1

=
∑

ℓ

cℓv(1)
ℓ . (2.19)

Since λ1 ! λℓ and cℓ ! 0 holds for all ℓ, we have λ1
∑

ℓ cℓv(1)
ℓ !∑ℓ cℓλℓv(1)

ℓ . Applying Lemma 2.2,
x(1)

k−1 =
∑

ℓ cℓv(1)
ℓ > 0 holds. Moreover, note that h(x) = xk−1/(x + t)k−1 is an increasing function of x for

x > 0. Hence, from Equation (2.19), we can conclude (λ1
∑

ℓ cℓv(1)
ℓ )k−1/(λ1

∑
ℓ cℓv(1)

ℓ + γ /β ′)k−1 !
(
∑

ℓ cℓλℓv(1)
ℓ )k−1/(

∑
ℓ cℓλiv

(1)
ℓ + γ /β ′)k−1 =

∑
ℓ cℓv(1)

ℓ . It follows (1 + γ /β ′λ1
∑

ℓ cℓv(1)
ℓ )k−1 "

1/
∑

ℓ cℓv(1)
ℓ . Substituting y with 1/β ′λ1

∑
ℓ cℓv(1)

ℓ , it becomes

(1 + γ y)k−1 " β ′λ1y. (2.20)

If the dynamic system reaches a non-trivial equilibrium, there must exist a y such that the above
inequality holds. It is easy to verify that (1 + γ y)k−1 is a convex function of y. If there exists a y such
that inequality (2.20) holds, then (1 + γ y)k−1 = β ′λ1y must have at least one solution.

In the proof of Theorem 2.3, we show that β ! γ ((k − 1)k−1/(k − 2)k−2) is a necessary
condition for (1 + γ y)k−1 = βy to have at least one solution. If follows naturally that λ1β

′ !
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γ ((k − 1)k−1/(k − 2)k−2) is a necessary condition for (1 + γ y)k−1 = β ′λ1y to have at least one solu-
tion. Hence, the existence of y for Ineq. (2.20) implies λ1β

′ ! γ ((k − 1)k−1/(k − 2)k−2), or equiva-
lently, s = λ1(β

′/γ )((k − 2)k−2/(k − 1)k−1) ! 1, which completes our proof. #

For the general case in which the infection rates are inhomogeneous, we have the following
corollary.

Corollary 2.2 Let β ′
max = maxk−1

i=1 β ′
i . For the generalized SIS model operating on an undirected con-

nected graph with adjacency matrix A and largest eigenvalue λ1, λ1(β
′
max/γ )((k − 2)k−2/(k − 1)k−1) !

1 is a necessary condition for the dynamic system (2.8) and (2.9) to reach a non-trivial equilibrium.

2.5 Analysing the generalized SIS model for general directed graphs

Let us move on to find conditions for the dynamic system (2.8) and (2.9) to reach a non-trivial equi-
librium for general directed graphs. We will first focus on the special case where the infection rates
are homogeneous and all nodes in the directed graph have the same incident degrees. Then we present
general results for general cases.

While analysing generalized multi-state SIS model for complete graphs, we use the mean-field
approximation (2.8) and (2.9) and implicitly assumed that all nodes have the same probability of being
in any given state s for t = 0. For consistency, we also make this assumption here. More precisely, we
assume x(1)

s (0) = x(2)
s (0) = · · · = x(|V |)

s (0) for any given state s and we say the dynamic system has homo-
geneous initial conditions for all nodes. We now provide another necessary condition for the dynamic
system (2.8) and (2.9) to have a non-trivial solution.

Theorem 2.5 For a directed graph G = (V , E) with all nodes having the same incident degree d−,
the necessary condition for the dynamic system (2.8) and (2.9) with homogeneous infection rates
β ′ and homogeneous initial conditions for all nodes to have a non-trivial equilibrium is d−β ′ !
γ ((k − 1)k−1/(k − 2)k−2).

Proof. Since all nodes have same initial conditions and same incident degree, it is straightforward to see
from Equations (2.8) and (2.9) that x(1)

s (t) = x(2)
s (t) = · · · = x(|V |)

s (t) holds for any given s ∈ {1, 2, . . . , k −
1} and time t > 0. Let xs(t) = x(1)

s (t) for all s ∈ {1, 2, . . . , k − 1}. Then we have
∑

j Ajix
(j)
k−1(t) = d−xk−1(t)

holds for all nodes i and any given time t ! 0. Hence, finding results for Equations (2.8) and (2.9) is
equivalent to finding results for the following Equations (2.21) and (2.22) and letting x(1)

s (t) = x(2)
s (t) =

· · · = x(|V |)
s (t) = xs(t) for all s and t ! 0.

dxk−1

dt
= d−β ′xk−2xk−1 − γ xk−1, (2.21)

dxs

dt
= −d−β ′xs + d−β ′xs−1 − γ xs ∀s ∈ {1, . . . , k − 2}. (2.22)

Hence, the dynamic system (2.8) and (2.9) has a non-trivial solution if and only if the dynamic
system (2.21) and (2.22) has non-trivial solution. Comparing Equations (2.21) and (2.22) with Equa-
tions (2.5) and (2.6), we can see that these two systems are equivalent if β1 = β2 = · · · = βk−1 = β =
d−β ′. Using the result from Theorem 2.3, we can conclude that d−β ′ ! γ ((k − 1)k−1/(k − 2)k−2) is
a necessary condition for the dynamic system (2.21) and (2.22) to have a non-trivial solution. This
completes our proof. #
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We have completed the derivation for the special case of our generalized SIS model with homoge-
neous infection rates operating on a graph with all nodes having the same incident degree. Let us now
present results for the general case. For any directed graph G with adjacency matrix A, we can add some
edges to G such that it becomes a graph G′ with adjacency matrix A′ satisfying A′

ij = max(Aij, Aji) for
all i, j. Moreover, suppose the maximum incident degree among all nodes in G is ∆−; we can add some
edges to G such that it becomes a graph G′′ = (V , E′) with all nodes having the same incident degree
∆−. Suppose that we are considering the spread of an epidemic. Since G′ and G′′ contains more edges
(‘possible contacts’) than G, the epidemic is more likely to have an outbreak in G′ and G′′ than G. In
other words, if the epidemic outbreaks in G at the end, it implies that the epidemic will also outbreak in
G′ and G′′. Hence, it is straightforward to conclude that since G is a subgraph of G′ and G′′, for any given
infection rates and recovery rates, the dynamic system (2.8) and (2.9) for G has a non-trivial solution
which implies that the dynamic system (2.8) and (2.9) for G′ and G′′ also has a non-trivial solution.

Before showing the results for general directed graphs, let us first define the notion of effective
strength for directed graphs.

Definition 2.2 The effective strength of our generalized SIS model for directed graphs is

s = min(λ1(A′), ∆−)
β ′

γ

(k − 2)k−2

(k − 1)k−1
. (2.23)

Now, for the discussion above, together with Theorems 2.4 and 2.5, we can establish the following
corollary.

Corollary 2.3 For any directed graph G = (V , E) with maximum incident degree ∆− and adjacency
matrix A, let A′

ij = max(Aij, Aji) for all i, j, and λ1(A′) be the largest eigenvalue of A′. For the generalized
SIS model with homogeneous infection rates and homogeneous initial conditions for all nodes operating
on G, the necessary condition for the existence of non-trivial equilibrium is

s = min(λ1(A′), ∆−)
β ′

γ

(k − 2)k−2

(k − 1)k−1
! 1. (2.24)

For the general case where the infection rates are inhomogeneous, using the results from Corollar-
ies 2.1 and 2.2, we have the following result.

Corollary 2.4 Let β ′
max = maxk−1

i=1 β ′
i . For any directed graph G = (V , E) with maximum incident

degree ∆− and adjacency matrix A, let A′
ij = max(Aij, Aji) for all i, j, and λ1(A′) be the largest eigen-

value of A′. For the generalized SIS model with homogeneous infection rates and homogeneous initial
conditions for all nodes operating on G, the necessary condition for the existence of non-trivial equilib-
rium is

min(λ1(A′), ∆−)β ′
max ! γ

(k − 1)k−1

(k − 2)k−2
. (2.25)

3. Experimental results for the generalized SIS model

For the generalized SIS model, we conduct experiments based on both synthetic and real datasets and
study the dynamics on fractions of states in a network. Note that our analysis of the condition for the
existence of non-trivial solutions mainly focuses on models with homogeneous infection rates. In our
experiments to verify these conditions, we also focus on models with homogeneous infection rates.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Simulation results over synthetic datasets: The dynamics on fractions of nodes in different states over time for a complete
graph, an Erdös–Rényi random graph and a power law random graph where γ = 1. (Initially all nodes have the same probability
1/k of being in any given state.) (a) K5000, β1 = β2 = 3. (b) G(5000, 0.05), β ′

1 = β ′
2 = 3/250. (c) P(5000, 3, 250, 2500), β ′

1 = β ′
2 =

3/250. (d) K5000, β1 = β2 = 20. (e) G(5000, 0.05), β ′
1 = β ′

2 = 20/250. (f) P(5000, 3, 250, 2500), β ′
1 = β ′

2 = 20/250.

3.1 Result over synthetic datasets

Our synthetic datasets include three undirected graphs: (i) a complete graph KN with N nodes, (ii)
an Erdös–Rényi random graph G(N , p) with N nodes and each edge is included in the graph with
probability p independent from every other edge and (iii) a random power law graph P(N , θ , d, m) with
N nodes, the exponent θ , the average degree d and the maximum degree m [9].

Figure 3 shows the simulation results of the ternary model in a complete graph, an Erdös–Rényi
random graph and a random power law graph. Note that although our analysis of ternary model focuses
on the case (i), our results can be applied to the case (ii) with some constant factor with respect to
d = Np, the expected average degree of the Erdös–Rényi random graph G(N , p). Figure 3 compares the
dynamics for the ternary model with different β1 and β2 values. Figure 3(a) shows that if there is no non-
trivial stationary equilibrium, then (x0, x1, x2) converges to (1, 0, 0) for large t. But if there is a stationary
equilibrium, then there is a possibility that (x1, x2) converges to another point. In Fig. 3(d), the dotted
lines represent a stationary non-trivial equilibrium (x1, x2) = (0.05, 0.897) and (x1, x2) converges to this
non-trivial equilibrium. Figure 3(b) and (e) show that the analysis holds for β ′

1 = β1/d and β ′
2 = β2/d

(d = Np = 250). We like to point out that, for the case (iii), our method is successful in stating the
equilibrium condition with β ′

1 = β1/d and β ′
2 = β2/d (d = 250); this is shown both in Fig. 3(c) and (f).

Figure 4 shows the numerical results given by solving Equation (2.1–2.2) for the complete graph
and Equations (2.8) and (2.9) for general graphs. Comparing Figs 3 and 4, we can see that the numerical
results based on mean-field analysis agree very well with the simulation results. From now on, for the
synthetic graphs under study, we use numerical results as the approximation of the simulation results.

Figures 5 and 6 illustrate our results about the necessary condition for the existence of non-trivial
equilibrium. We use the same ‘take-off’ plots used by Prakash et al. [3] to illustrate our experimental
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Numerical results over synthetic datasets. The dynamics on fractions of nodes in different states over time for a complete
graph, an Erdös–Rényi random graph and a random power law graph where γ = 1. (The initial probability of being in state s
for each node i: x(i)

s (0) = 1/k.) (a) K5000, β1 = β2 = 3. (b) G(5000, 0.05), β ′
1 = β ′

2 = 3/250. (c) P(5000, 3, 250, 2500), β ′
1 = β ′

2 =
3/250. (d) K5000, β1 = β2 = 20. (e) G(5000, 0.05), β ′

1 = β ′
2 = 20/250. (f) P(5000, 3, 250, 2500), β ′

1 = β ′
2 = 20/250.

(a) (b) (c)

Fig. 5. Numerical Results over synthetic datasets: ‘Take-off’ plots, Footprint vs. Effective strength (lin-log) for a complete
graph, an Erdös–Rényi random graph and a power law random graph. The tipping point matches our necessary condition
analysis in all cases. (The initial probability of being in state s for each node i: x(i)

s (0) = 1/k.) (a) K5000. (b) G(5000, 0.05).
(c) P(5000, 3, 250, 2500).

results. The ‘footprint’ [3] is a measurement of the extent of infection. We define the footprint in
our numerical results as the fraction of nodes being infected when the dynamic system reaches its
equilibrium.

Theorem 2.4 suggests that if the effective strength s < 1, there exists no non-trivial equilibrium
and the fraction of nodes being infected converges to zero in all models. In Figs 5 and 6, the system
always reaches the trivial equilibrium when s < 1. In Fig. 5, the initial fraction of nodes being infected
is 1/k, the footprint of infection suddenly jumps at s = 1. This implies that, for the case where the initial
fraction of nodes being infected is sufficiently large, s = 1 is a tipping point for the phase transition. If



MODELLING MULTI-STATE DIFFUSION PROCESS IN COMPLEX NETWORKS 447

(a) (b) (c)

Fig. 6. Numerical Results over synthetic datasets: ‘Take-off’ plots, Footprint vs. Effective strength (lin-log) for a complete graph,
an Erdös–Rényi random graph and a power law random graph. The tipping point matches our necessary condition analysis in all
cases. (The initially probability of being in different states for each node i: x(i)

0 = 0.99, x(i)
k−1 = 0.01.) (a) K5000. (b) G(5000, 0.05).

(c) P(5000, 3, 250, 2500).

the effective strength is slightly above this threshold, the system will reach a non-trivial equilibrium.
Under the threshold, there does not exist any non-trivial equilibrium. However, the footprint of infection
does not suddenly jump at s = 1 as shown in Fig. 6. It coincides with our discussion in Section 2.4 that
s > 1 is only a necessary condition for the system to reach a non-trivial equilibrium, not a sufficient one.
For the system to reach a non-trivial equilibrium, the smaller the initial fraction of nodes being infected,
the larger is the effective strength s needed. From Fig. 6, we can also see that, for the same set of initial
conditions, the larger the value of k, the larger is the effective strength s needed for the existence of
non-trivial equilibrium.

3.2 Result over real datasets

Our real datasets include three networks: (i) A Facebook-like social network originating from an online
community for students at the University of California, Irvine [10]. The dataset contains 1, 899 users and
20, 296 directed edges. The largest weakly connected component contains 1, 893 users. (ii) An Enron
email network that covers all the email communication from around half a million emails [11,12].
The dataset contains 36, 692 email addresses and 183, 831 undirected edges. The largest connected
component contains 33, 696 email addresses. (iii) An Epinions social network of the who-trust-whom
relationships from a consumer review site Epinions.com [13]. This network contains 508, 837 directed
‘trust’ relationships among 75, 879 users. All nodes are in the largest weakly connected component.

Figure 7 shows the simulation results and the numerical results based on the Facebook-like social
network. The numerical results are given by solving Equations (2.8) and (2.9). Comparing Fig. 7(a, b)
with Fig. 7(c, d), we can see that the numerical results based on mean-field analysis agree very well
with the simulation results.

Figures 8 and 9 illustrate our results about the necessary condition for the existence of non-trivial
equilibrium using the ‘take-off’ plots [3]. We run each simulation for 50 units of time and took the
average of 20 runs. The ‘footprint’ of simulation results is defined as the maximum fraction of nodes
infected during the second half of the simulation.

For the undirected Enron email network, applying Theorem 2.4, we know that the effective strength
s = λ1(A)(β ′/γ )((k − 2)k−2/(k − 1)k−1) ! 1 is a necessary condition for the dynamic system (2.8) and
2.9) to reach a non-trivial equilibrium. For directed networks, let A′

ij = max(Aij, Aji) and ∆− be the
maximum incident degree. For the Facebook-like social network, we have λ1(A′) = 48.1431 and ∆− =
137. For the Epinions social network, we have λ1(A′) = 106.5279 and ∆− = 3035. Hence, we have
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(a) (b)

(c) (d)

Fig. 7. Results over the Facebook-like network: Fraction of nodes being in different state over time where k = 3 and γ = 1. (a, b)
Plot of simulation results. (c, d) Plot of numerical results. (Initially all nodes have the same probability 1/k of being in any given
state.) (a) β ′

1 = β ′
2 = 0.01. (b) β ′

1 = β ′
2 = 2. (c) β ′

1 = β ′
2 = 0.01. (d) β ′

1 = β ′
2 = 2.

(a) (b) (c)

Fig. 8. Simulation results over three real networks: ‘Take-off’ plots, Footprint vs. Effective strength (lin-log) for the complete
graph, Erdös–Rényi random graph and power law random graph. The tipping point matches our necessary condition analysis in
all cases. (Initially all nodes have same probability 1/k of being in any given state.) (a) Facebook-like social network. (b) Enron
email network. (c) Epinions social network.

λ1(A′) < ∆− for both networks. Applying Corollary 2.3, one can conclude that the effective strength
s = λ1(A′)(β ′/γ )((k − 2)k−2/(k − 1)k−1) ! 1 is a necessary condition for the dynamic system (2.8–2.9)
to reach a non-trivial equilibrium.

The tipping point in Figs 8 and 9 matches our necessary condition analysis. For effective strength
s < 1, the fraction of nodes being infected converges to zero for large t. For effective strength s > 1,
the dynamic system may reach a non-trivial equilibrium. Moreover, whether the system will reach a
non-trivial equilibrium or not depends not only on the effective strength, but also on the initial fraction
of nodes being infected.
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(a) (b) (c)

Fig. 9. Simulation results over three real networks: ‘Take-off’ plots, Footprint vs. Effective strength (lin-log) for the Facebook-
like social network, the Enron email network and theEpinions social network. The tipping point matches our necessary condition
analysis in all cases. (Initially all nodes have probability 0.01 of being in the infected state and probability 0.99 of being in state
0.) (a) Facebook-like social network. (b) Enron email network. (c) Epinions social network.

4. General SIS model with competing sources

We like to note that some of the previous work only considered one contagion source in a network. In
practice, however, there might be more than one kind of contagions, ideas or behaviours spreading at
the same time. Here, we consider two competing sources: a and b, which simultaneously spread their
influence in the same network. We use the generalized SIS model discussed in Section 2 to model these
two competing sources. In the following analysis and without loss of generality, we assume source b is
dominant over source a such that even when a node is on its way to become activated by source a, it is
still possible for this node to be influenced by its neighbours activated by source b and become activated
by source b eventually. Note that the converse is not true, or source a has no such power over b. One
application of such a model is to consider a spreading of virus a and one can eliminate the spreading
of virus a by an antidote (model as source b). Let us first present the formal analysis of a ternary
model in a large complete graph; then we formulate the model with two competing sources under a
general graph.

4.1 Ternary model in a large complete graph

We consider a model with two competing sources ‘a’ and ‘b’ as depicted in Fig. 10. In this model, the
underlying network is a large complete graph G = (V , E). Any node v ∈ V can be in one of the five
states: {0, a1, a2, b1, b2}. Nodes in state a2 and b2 are in the activation state for a and b, respectively.
Nodes in state a2 (or b2) can change the state value of its neighbours, say node s, which is in state 0 or
a1 (0 or b1), to state a1 or a2 (b1 or b2). Furthermore, to represent the dominant behaviour of source b,
nodes in state b2 can change their neighbouring nodes in state a1 to state b1 with a non-zero probability.
Nodes in state a1 or a2 can independently recover with a rate γa (recovery rate). Similarly, nodes in state
b1 or b2 can recover with a rate γb. Assume that the underlying network is a complete graph. For each
state s ∈ {0, a1, a2, b1, b2}, let xs(t) be the fraction of nodes in state s at time t. We can express the system
dynamics using the following differential equations:

dxa1

dt
= α1x0xa2 − α2xa1 xa2 − λxa1 xb2 − γaxa1 , (4.1)

dxa2

dt
= α2xa1 xa2 − γaxa2 , (4.2)
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Fig. 10. The ternary SIS model with two competing sources.

Fig. 11. The generalized SIS model with two competing sources.

dxb1

dt
= β1x0xb2 − β2xb1 xb2 + λxa1 xb2 − γbxb1 , (4.3)

dxb2

dt
= β2xb1 xb2 − γbxb2 , (4.4)

x0(t) = 1 − xa1(t) − xa2(t) − xb1(t) − xb2(t). (4.5)

For the above system, there does not exist a closed-form solution, but one can solve it numerically
so as to understand the dynamics of these two competing sources. In the following section, we will
present our numerical results.

4.2 General multi-state model in a large complete graph

Now we consider a general SIS with two competing sources. Let M! 2 and N ! 2 be the number of
additional states for sources a and b. Since there is one additional initial state 0, the total number of
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states is M + N + 1. For example, in the ternary model, we have M=N = 2. Figure 11 depicts the
state-transition diagram of the general multi-state model.

Observe that when a node i is activated by the dominant source b and one of its neighbouring
nodes j is in state ai (1 " i "M − 1), then the node i can change node j from state ai to state b1 with
probability λi per unit time. In some real-world cases, for a node in state ak (1 " k "N − 1), a higher
value of k implies that the node is closer to being activated by the source a. In this case, we may have
λ1 ! λ2 ! · · · ! λM−1. For example, let us consider a consumer purchase decision process and suppose
M= 3. Then a1 is the stage that a customer has heard about a new product and a2 is the stage that he
is planning to make a purchase. For this example, a customer in stage a1 is easier to change his mind if
he is exposed to a more dominant product, say b. In other words, we can assume that λ1 ! λ2. Note that
x0 = 1 −

∑M
i=1 xai −

∑N
j=1 xbj . The system dynamics can be specified by the following equations:

dxa1

dt
= α1x0xaM − α2xa1 xaM − λ1xa1 xbN − γaxa1 , (4.6)

dxai

dt
= αixai−1 xaM − αi+1xai xaM − λixai xbN − γaxai ∀i ∈ {2, . . . ,M − 1}, (4.7)

dxaM

dt
= αMxaM−1 xaM − γaxaM , (4.8)

dxb1

dt
= β1x0xbN − β2xb1 xbN +

M−1∑

ℓ=1

λℓxaℓ
xbN − γbxb1 , (4.9)

dxbj

dt
= βjxbj−1 xbN − βj+1xbj xbN − γbxbj ∀j ∈ {2, . . . ,N − 1}, (4.10)

dxbN

dt
= βN xbN−1 xbN − γbxbN . (4.11)

It is easy to see that the ternary model (where M=N = 2) discussed in Section 4.1 is in fact a
special case of this general model, where M=N = 2.

4.3 Multi-state model in a general graph

When the underlying network is a complete graph, we assume that contact is possible with the entire
population. However, for general graphs, only an activated node can influence its neighbours. In this
model, the transmission rate is the rate at which a source is being transmitted between two nodes, one
activated and one non-activated, and they are connected by an edge in the graph. In a complete graph,
the transmission rate is the rate of contacts between an activated node and all others, whereas in a
general graph it is the rate of contacts between neighbouring nodes. We denote the transmission rate
here by α′

i (1 " i "M), β ′
j (1 " j "N ) and λ′

ℓ (1 " ℓ "M − 1). For example, assume that node i and
node j are connected. Suppose node i is in state bN (activated by source b) and node j is in state 0, node
j can change from state 0 to b1 with rate β ′

1. Suppose another node k is in state a1. The rate that node k
will change to state b1 is λ′

1. Noted that the transmission rates in a complete graph and a general graph
are different from each other.

Let G = (V , E) be the underlying general graph, where A is the adjacency matrix of G. Let
M! 2 and N ! 2 be the number of additional states of sources a and b, respectively. For each
s ∈ {0, a1, . . . , aM, b1, . . . , bN }, let x(i)

s (t) be the average probability that node i is in state s at time t. Let
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⟨x(i)
s1

(t), x(j)
s2

(t)⟩ be the average probability that node i is in state s1 and node j is in state s2 at time t. We
also use the approximation that ⟨x(i)

s1
, x(j)

s2
⟩ = x(i)

s1
x(j)

s2
to close the equations at the level of a one-variable

average. We can express the system dynamics as follows:

dx(i)
a1

dt
= α′

1x(i)
0

∑

j

Ajix(i)
aM − α′

2x(i)
a1

∑

j

Ajix(i)
aM − λ′

1x(i)
a1

∑

j

Ajix
(i)
bN − γax(i)

a1
, (4.12)

dx(i)
ak

dt
= α′

kx(i)
ak−1

∑

j

Ajix(i)
aM − α′

k+1x(i)
ak

∑

j

Ajix(i)
aM − λ′

kx(i)
ak

∑

j

Ajix
(i)
bN − γax(i)

ak
2 " k "M − 1,

(4.13)

dxaM

dt
= α′

Mx(i)
aM−1

∑

j

Ajix(i)
aM − γax(i)

aM , (4.14)

dx(i)
bk

dt
= β ′

1x(i)
0

∑

j

Ajix
(i)
bN − β ′

2x(i)
bk

∑

j

Ajix
(i)
bN +

M−1∑

ℓ=1

λ′
ℓx(i)

aℓ

∑

j

Ajix
(i)
bN − γbx(i)

bk
, (4.15)

dxbk

dt
= β ′

kx(i)
bk−1

∑

j

Ajix
(i)
bN − β ′

k+1x(i)
bk

∑

j

Ajix
(i)
bN − γbx(i)

bk
2 " k "N − 1, (4.16)

dx(i)
bN

dt
= β ′

N x(i)
bN−1

∑

j

Ajix
(i)
bN − γbx(i)

bN , (4.17)

x(i)
0 = 1 −

M∑

i=1

x(i)
ai

−
N∑

j=1

x(i)
bj

. (4.18)

The above derivation is equivalent to the dynamic system (4.6–4.11) for complete graphs when
αi = (|V | − 1)α′

i for all 1 " i "M, λℓ = (|V | − 1)λ′
ℓ for all 1 " ℓ "M − 1 and βj = (|V | − 1)β ′

j for all
1 " j "N .

5. Experimental results for competing sources

In this section, we provide numerical results for the generalized SIS model with two competing sources.
As in Section , we consider networks of (i) a complete graph KN with N nodes, (ii) a Erdös–Rényi ran-
dom graph G(N , p) with N nodes and each edge is included in the graph with probability p independent
from every other edge and (iii) a random power law graph P(N , θ , d, m). For the initial condition, the
initial state value of each node is chosen uniformly and independently according to a given initial rate.
Results for ternary model: The simulation results of the ternary model in a complete graph, an Erdös–
Rényi random graph and a random power law graph are illustrated in Fig. 12. One can see that
when transmission rates αi and βi are not sufficiently large, the epidemic will eventually die out.
In Fig. 12(c–d), we have α = 250α′, β = 250β ′ and λ = 250λ′, where 250 is the expected average degree
of nodes in the two random graphs. Thus, the expected number of contacts of an activated node remains
the same. We also observe a similar phase transition and equilibrium in all of these three networks.

Figure 13 depicts the numerical results given by solving Equations (4.1–4.5) for a complete graph
and Equations (4.12)–(4.18) for a general graph. Comparing Fig. 13 with Fig. 12, one can observe that
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(a) (b)

(c) (d)

Fig. 12. Simulation results: The dynamics of x0, xa1 , xa2 , xb1 and xb2 over time for a complete graph, an Erdös–Rényi random
graph and a random power law graph where γa = γb = 1. (Initially, each node has probability 0.01 of being in state a2, probability
0.01 of being in state b2 and probability 0.98 of being in state 0.) (a) K5000, α1 = α2 = β1 = β2 = 8, λ = 2. (b) K5000, α1 = α2 =
β1 = β2 = 16, λ = 2. (c) G(5000, 0.05), α′

1 = α′
2 = 16/250, β ′

i = β ′
2 = 16/250, λ′ = 2/250. (d) P(5000, 3, 250, 2500), α′

1 = α′
2 =

16/250, β ′
i = β ′

2 = 16/250, λ′ = 2/250.

the numerical results of solving the differential equations are very close to the numerical results given by
simulation. As we discussed in Section 4.3, Equations (4.12–4.18) is an approximation of the dynamic
system for general graphs. From the experimental results, we can see that the approximation is very
close to the simulation results.

From now on, we show only the experiments based on complete graphs. For Erdös–Rényi ran-
dom graphs and power law graphs, the results could also be applied. We use numerical results given
by Equations (4.6–4.11). Note that, for complete graphs, the numerical results do not depend on the
number of nodes. So we do not need to specify the number of nodes for the numerical results for the
complete graph.

Impact of delay in deploying source b: Fig. 14 depicts the numerical results for which xa2(0) = 2xb2(0) =
0.02. By setting different initial fractions of infected nodes for sources a and b, we can examine
the impact of delay in the phase-transition process. For example, if xa2(0) > xb2(0), we can assume
that source b is introduced later than a. In Fig. 14(a), we can see that, for product b, if β1,2 and
λ are not large enough, it cannot compete well with product a. Eventually, the fraction of nodes in
state b2 will approach zero. On the other hand, for a product b, if it is far more superior than prod-
uct a (i.e., λ and β1,2 are sufficiently large, or γb is small), potential buyers can be easily persuaded
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(a) (b)

(c) (d)

Fig. 13. Numerical results: The dynamics of x0, xa1 , xa2 , xb1 and xb2 over time for a complete graph, an Erdös–Rényi random
graph and a random power law graph where γa = γb = 1. (The initial probability of being in different states for each node i:
x(i)

0 (0) = 0.98, x(i)
a2 (0) = 0.01 and x(i)

b2
(0) = 0.01.) (a) K5000, α1 = α2 = β1 = β2 = 8, λ = 2. (b) K5000, α1 = α2 = β1 = β2 = 16,

λ = 2. (c) G(5000, 0.05), α′
1 = α′

2 = 16/250, β ′
1 = β ′

2 = 16/250, λ′ = 2/250. (d) P(5000, 3, 250, 2500), α′
1 = α′

2 = 16/250, β ′
1 =

β ′
2 = 16/250, λ′ = 2/250.

to eventually adopt product b. Figure 14(b–d) correspond to these situations. If product b is supe-
rior, it will be the dominant source even if it is introduced to the network at a much later stage than
product a.

Impact of λ: Fig. 15 shows that λ plays an important role for source b to be dominant. Suppose the
fraction of nodes in state a2 equals the fraction of nodes in state b2 initially. Intuitively speaking, a
larger λ means nodes in state a1 have a higher probability of being changed to state b1. From the figure,
we can observe that the larger the λ is, the sooner the network reaches its equilibrium. In addition,
suppose we fix α1,2 and β1,2 such that at equilibrium the fraction of nodes in state a2 is zero. In this
scenario, the value of λ only has the impact on the time taken to reach the equilibrium, and it has a
negligible impact on the final distribution of nodes in different states.
Impact of M and N : For a multi-state model with one source, as we have discussed in Section 2, when
k (i.e. the number of steps to activate a node from state 0) increases, the threshold for γ decreases so as
to prevent a phase transition. In other words, if the recovery rate γ remains the same, and if we want to
maximize the influence of a source, it is important for us to decrease k.

For a multi-state model with two competing sources, similar conclusions can be made. Since source
b is the dominant one, we could assume that N "M (i.e. it takes less phases for a node to be activated
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(a) (b)

(c) (d)

Fig. 14. Numerical results over a complete graph showing the impact of delay in deploying source b: The dynamics of x0, xa1 ,
xa2 , xb1 and xb2 over time where γa = 1. (Initial fraction of nodes in different states: x0(0) = 0.98, xa2 (0) = 0.02 and xb2 (0) =
0.01.) (a) α1 = α2 = β1 = β2 = 16, λ = 2, γb = 1. (b) α1 = α2 = 16, β1 = β2 = 21, λ = 2, γb = 1. (c) α1 = α2 = β1 = β2 = 16, λ =
2, γb = 0.5. (d) α1 = α2 = β1 = β2 = 16, λ = 31, γb = 1.

by dominant source b). For the ease of presentation, we only show the fraction of nodes in state 0, state
aM and state bN .

We carried out a set of experiments where M= 3 and N = 2. Figure 16 shows the numerical results.
Figure 16(b) shows that even if α1,2,3 is larger than β1,2 and xa3(0) = 2xb2(0), source a may still die out.
For an application of this model, assume source a and b are two products. If product b enters the market
later than product a, or customers who brought product b cannot contact as many potential customers as
those who brought product a, decreasing the phase for product b is crucial. Figure 16(c) and (d) show
that if source a takes more phases to activate nodes, it needs to have a larger transmission rate so as to
counter the dominant effect of b.

6. Related work

Contagion modelling on large-scale networks has gained a lot of attention lately. It is important for
researchers not only to gain the fundamental insights on how the disease, idea or behaviour spreads,
but also how products get promoted in social networks. One popular epidemic model is the SIS model
[14–16]. A series of works focus on the analysis of the SIS model in different networks [2,7,17–20]. For
epidemic models, the study of epidemic thresholds has received significant attention. Ganesh et al. [2]
and Chakrabarti et al. [7] analysed the epidemic thresholds for the SIS model on general undirected
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(a) (b)

(c) (d)

Fig. 15. Numerical results over a complete graph showing the impact of λ: The dynamics of x0, xa1 , xa2 , xb1 and xb2 over
time where α1 = α2 = β1 = β2 = 16 and γa = γb = 1. (Initial fraction of nodes in different states: x0(0) = 0.97, xa2 (0) = 0.01 and
xb2 (0) = 0.01.) (a) λ = 0.1. (b) λ = 0.5. (c) λ = 1. (d) λ = 3.

networks. Recently, Prakash et al. [3] gave the threshold for a series of virus propagation models, which
include the SIS model, on arbitrary graphs. Other well-known models, such as SEIR and SEIV model,
that introduce the “exposed” state have also been proposed.

In practice, however, a more general SIS model is needed. In particular, one ‘exposed’ state between
healthy and infected states may not be enough for modelling disease spreading. For viral marketing, the
consumer purchase decision process theory [6] suggests that there are five stages (or states) until a
consumer buys a product and influences others. This motivates us to study and analyse a generalized
SIS model that allows multi-susceptible states before getting infected. To the best of our knowledge,
previous work cannot be easily extended on our generalized multi-state SIS model. We use the mean-
field analysis technique to analyse our generalized model, and show that our methodology predicts the
diffusion accurately for many different types of graphs.

Recently, there has been a research trend on modelling and analysing competing processes. Melnik
et al. [21] proposed a model of a multi-stage complex contagion, in which agents at different stages exert
different amounts of influence on their neighbours. Our work focused on the generalized SIS model, in
which the phase-transition process is different from the cascade model used in [21]. Newman [22],
Aspnes et al. [23], Beutel et al. [24] and Prakash et al. [8] studied the scenario where two sources are
competing, but their models are defined differently from ours since they did not consider intermediate
stages between susceptible and infected states.
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(a) (b)

(c) (d)

Fig. 16. Numerical results over a complete graph showing the impact of M and N : The dynamics of x0, xaM−1 , xaM , xbN−1
and xbN over time where M= 3, N = 2, γa = γb = 1 and λi = 2 (1 " i "M − 1). (Initial fraction of nodes in different
states: xb2 (0) = 0.01.) (a) αi = 25, β1 = β2 = 16, xa3 (0) = 0.02. (b) αi = 30, β1 = β2 = 16, xa3 (0) = 0.02. (c) αi = 20, β1 = β2 =
15, xa3 (0) = 0.01. (d) αi = 45, β1 = β2 = 16, xa3 (0) = 0.01.

In our early work [25], we presented the idea of the generalized SIS model and proposed a gener-
alized SIS model with two competing sources. For a generalized SIS model, our analysis focused on
complete graphs in [25] and we extend our analysis to general graphs in this paper.

7. Conclusion

In this paper, we propose a generalized SIS model by allowing the existence of intermediate states
between susceptible and infected states. We use the mean-field analytical technique to analyse the
influence spreading dynamics in both complete graphs and general graphs. Specifically, we study the
problem of determining the sufficient condition that prevents the information or virus spreading, or
equivalently, the necessary condition that may lead to the information or virus spreading. We show that
the condition that prevents the spread of contagions depends on two de-coupled effects: the network
topology and the parametric values of the generalized SIS model. For undirected graphs, the condition
depends on the largest eigenvalue of the adjacency matrix, the infection rates, the recovery rate and
the number of states k in our generalized SIS model. For directed graphs, besides the above factors,
the condition also depends on the maximum incident degree among all nodes. We carry out extensive
experiments on both synthetic and large real datasets to show the dynamics on fractions of states in the
general SIS model with different parametric values operating on different networks, and illustrate our
conditions for the tipping point.
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We also analyse two competing sources, one dominant and one regressive, under the generalized
SIS model which allows multi-intermediate states. In particular, we allow nodes being exposed to the
regressive source change to being influenced by the dominant source. We formulate the dynamic process
on both complete and general graphs and show via experiment how different parametric values, such
as different transmission rates or initial fraction of nodes being infected, may affect the phase transition
results and final equilibrium.

We believe our work is a step towards building more realistic models to describe the spread of
information or virus. We like to note that our models in this paper, especially the generalized SIS model
with two competing sources, leave important open questions for future research. For example, is it
possible to predict the final fraction of nodes being infected quickly given any network topology and
parametric values of the model? Moreover, for the general SIS model with two or more competing
sources, it is interesting to find the condition that leads to the spread of the dominant source or prevents
the spreading of any sources. We will leave these questions as future work.
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